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Nonequilibrium critical behavior in unidirectionally coupled stochastic processes
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Phase transitions from an active into an absorbing, inactive state are generically described by the critical
exponents of directed percolation~DP!, with upper critical dimensiondc54. In the framework of single-
species reaction-diffusion systems, this universality class is realized by the combined processesA→A1A,
A1A→A, andA→0. We study a hierarchy of such DP processes for particle speciesA,B, . . . , unidirection-
ally coupled via the reactionsA→B, . . . ~with ratesmAB , . . . ). When the DP critical points at all levels
coincide, multicritical behavior emerges, with density exponentsb i which are markedly reduced at each
hierarchy leveli>2. This scenario can be understood on the basis of the mean-field rate equations, which yield
b i51/2i 21 at the multicritical point. Using field-theoretic renormalization-group techniques ind542e di-
mensions, we identify a new crossover exponentf, and computef511O(e2) in the multicritical regime~for
small mAB) of the second hierarchy level. In the active phase, we calculate the fluctuation correction to the
density exponent on the second hierarchy level,b251/22e/81O(e2). Outside the multicritial region, we
discuss the crossover to ordinary DP behavior, with the density exponentb1512e/61O(e2). Monte Carlo
simulations are then employed to confirm the crossover scenario, and to determine the values for the new
scaling exponents in dimensionsd<3, including the critical initial slip exponent. Our theory is connected to
specific classes of growth processes and to certain cellular automata, and the above ideas are also applied to
unidirectionally coupled pair annihilation processes. We also discuss some technical as well as conceptual
problems of the loop expansion, and suggest some possible interpretations of these difficulties.
@S1063-651X~99!02906-2#

PACS number~s!: 64.60.Ak, 05.40.2a, 82.20.2w
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I. INTRODUCTION

The notion ofuniversalityplays a central role in equilib
rium as well as in nonequilibrium statistical mechanics.
was first used by experimental physicists in order to desc
the observation that certain thermodynamic observa
measured in different and apparently unrelated equilibri
systems near a continuous phase transition may exhibit
same type of singular behavior@1#. It was, in fact, then real-
ized that the majority of equilibrium critical phenomena b
long to very fewuniversality classeswhich are characterized
by a certain set of critical exponents. In order to expla
universality, various theoretical approaches have been
structed, for example scale invariance@2#, field-theoretic
renormalization-group techniques@3#, and the theory of con-
formal invariance@4#, which predicts a series of universalit
classes for two-dimensional critical systems. Thus in equi
rium statistical mechanics, especially in two dimensions,
concept of universality seems to be well understood.

For systems far from equilibrium, however, the situati
near dynamic continuous phase transitions is less clear. N
equilibrium processes are much harder to solve or eve
characterize exactly since the probability distribution can
be obtained from an energy functional, but has to be deri
directly from the equations of motion. In addition, system

*Present address: Physics Department, Virginia Polytechnic In
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far from equilibrium are in general not conformally invaria
since there is no symmetry between spatial and temp
degrees of freedom. Nevertheless it appears that universa
although probably in a weaker sense, may also play an
portant role in nonequilibrium critical phenomena. As in t
case of equilibrium physics, the picture that emerges is
only a few distinct universality classes seem to exist. T
known examples include phase transitions in driven diffus
systems@5#, the power-law decay in annihilation-coagulatio
processes@6–8#, the ‘‘parity-conserving’’ dynamic transition
for branching and annihilating random walks with even o
spring number@9#, nonequilibrium roughening transitions i
growth models@10#, specifically in the KPZ equation@11#,
and the critical points of directed percolation@12#, as de-
scribed by Reggeon field theory@13#, and of dynamic~iso-
tropic! percolation@14#. As a unifying theoretical framework
is not yet available, we are still far from a systematic clas
fication of nonequilibrium critical phenomena. Therefore o
important direction of research is in fact to search for furth
unknown universality classes.

Another direction, which is actually the objective of th
present paper, would be to investigate the known universa
classes in more complicated contexts. The basic idea i
use several nonequilibrium systems of a known universa
class as building blocks of a superior structure in which
systems are linked to each other in a specific manner.
question posed is whether these systems can be combin
such a way that novel critical behavior emerges. In ot
words, is it possible to couple several nonequilibrium s

ti-
6381 ©1999 The American Physical Society
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tems of a given universality class in such a manner that
resulting critical behavior is characterized by independ
critical exponents?

Such a model withquadraticallycoupled directed perco
lation ~DP! processes was recently investigated by Jans
who found that despite the apparent complexity of t
coupled multispecies system, the universality class of
active/absorbing transition was that of DP itself@15#. In the
present paper we show that novel critical behavior m
however, occur when several copies of the same nonequ
rium process arelinearly coupled in one direction withou
feedback. More precisely, we consider a linear hierarchy
unidirectionally coupled copiesA, B, C, . . . of the same
nonequilibrium system:

A→B→C→••• . ~1.1!

The systems are coupled in such a way that the dynam
processes at a certain level in the hierarchy depend on
state at the preceding level but not vice versa. For exam
subsystemA, the lowest level in the hierarchy, is not influ
enced by the dynamics ofB andC and thus it evolves inde
pendently as if the other hierarchy levels did not exist. S
systemB in turn is affected byA but not byC, and hence this
is the first level in the hierarchy where novel critical behav
might occur. The hierarchy can be continued to infinite
many levels. However, because of the unidirectional str
ture one can always truncate the hierarchy at some l
without affecting the temporal evolution at lower levels. F
example, we may consider a two-level hierarchyA→B or a
three-level hierarchyA→B→C; in both cases the dynamic
of the subsystemsA andB would be exactly the same.

The most interesting behavior of the composite system
expected when the subsystemsA, B, C, . . . themselves
are close to criticality. This usually happens when the i
lated subsystems would undergo a continuous nonequ
rium phase transition. Let us assume that the stochastic
cess under consideration is controlled by a single param
p with a phase transition taking place atp5pc . A unidirec-
tionally coupled hierarchy of such processes is thus c
trolled by a sequence of independent control parame
p(A),p(B),p(C), . . . , which means that the composite syste
is described by a high-dimensional phase diagram. When
levels are critical~i.e., p(A)5p(B)5p(C)5•••5pc), a com-
plex interplay of long-range correlations is expected. We w
refer to this special point in the phase diagram as amulti-
critical point. In the vicinity of this point the properties o
the entire system depend crucially on the direction fr
which it is approached, resulting in interestingmulticritical
behavior. In particular we will consider the special cas
p(A)5p(B)5p(C)5•••5p, where the entire hierarchy i
controlled by a single parameter.

The outlined concept of unidirectionally coupled noneq
librium processes is quite general and may be applied
various dynamical systems. But, as we shall also see,
mechanism does not necessarily lead to new univers
classes in all cases, and we have already mentioned the
dratically coupled DP processes@15# as one counterexample
In the present work we will focus on nonequilibrium pr
cesses which display a continuous phase transition fro
e
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fluctuating into an absorbing state, i.e., a configuration wh
once reached, cannot be escaped from.

The canonical example for a transition into an absorb
state is the critical point of directed percolation~DP!. In DP,
sites of a lattice are either occupied by a particle~active! or
empty ~inactive!. The dynamic processes are that a parti
can self-destruct or produce an offspring at a neighbor
empty site. If the rate for offspring productionp is very low,
the system always reaches a state without particles whic
the absorbing state of the system. On the other hand, whp
exceeds a certain critical valuepc , another steady state wit
a finite particle density exists on the infinite lattice. In b
tween, a continuous phase transition takes place whic
characterized by long-range power-law correlations. Anot
example considered in the present work is the annihilat
processA1A→0 @7,8# in which the particle density decay
as t2d/2 in dimensionsd,2. Here the absorbing state~the
empty lattice! is approached without the tuning of any p
rameter, i.e., the process is ‘‘critical’’ by itself.

To construct a unidirectionally coupled hierarchy of su
processes, we implement additional dynamical rules wh
allow each particle at a given level in the hierarchy to indu
the creation of a new particle at the same lattice site of
next level. This ensures that the composite system still ha
absorbing state, namely the empty state without partic
More precisely, a whole hierarchy of absorbing subspace
generated. For example, if subsystemA enters the inactive
state, it will never become active again and therefore
dynamical processes are restricted to an absorbing subs
where onlyB,C, . . . may fluctuate. This subspace in tu
contains another absorbing subspace in whichB is inactive,
etc. As we will demonstrate, such a hierarchy of syste
with absorbing states coupled by induced particle creatio
characterized by a subset of novel critical exponents
should be emphasized that the emergence of novel cri
behavior is related to the fact that the processes are cou
in only one direction. Even a very small feedback~e.g., B
→A,C→B) or cyclic closure~e.g., A→B→C→A) would
destroy this new feature.

In this paper we present a detailed analysis of unidir
tionally coupled DP@16#. For the case of equal control pa
rameters it is observed that the asymptotic particle dens
near the multicritical point are characterized by differe
critical exponentsbA ,bB ,bC , . . . . Since levelA evolves
independently,bA is just the usual density exponent of DP
At higher levels numerical estimates show that the den
exponents are considerably reduced compared to their
values. In Sec. II we discuss the mean-field theory of coup
DP which already explains why the density exponents
higher levels are reduced. It also allows us to study crosso
phenomena close to the multicritical point. Mean-field theo
is expected to hold above the DP critical spatial dimens
dc54. For d,dc , the numerically observed values for th
density exponents are much smaller, which means that
mean-field results are strongly modified by fluctuation
fects. In order to understand these reduced values, we
cently derived the critical exponents to one-loop order@16#
by means of a field-theoretical renormalization-group ana
sis, based on the ‘‘Hamiltonian’’ representation of the cla
sical master equation@8,17,18#. In Sec. III we present thes
calculations in detail, including a discussion of the diagon



s
e
ld
ic
ns
pl
ec
a
ap

lly
t
tio
o
m
ve
ve

at

o
tic

wi
in
lf

ra
se

oc
ss

to
be

be
g
tem,

cape
er

tive
ap-
ate
al

i-
o-

riti-

-
re-

nd

ar-

pa-

ent

PRE 59 6383NONEQUILIBRIUM CRITICAL BEHAVIOR IN . . .
ized and multicritical theories, respectively, the active pha
logarithmic corrections atdc54, crossover studies, and th
critical behavior at higher levels in the hierarchy. The fie
theoretical results are supported by extensive numer
simulations in Sec. IV, while in Sec. V various applicatio
of coupled DP are demonstrated. The examples of cou
annihilation and other closely related topics are the subj
of Sec. VI. Finally, a critical discussion of some technical
well as conceptual problems arising in the field-theoretic
proach are the subject of our conclusions in Sec. VII.

II. COUPLED DP PROCESSES:
MEAN-FIELD APPROXIMATION

In the bulk of this paper, we shall study unidirectiona
coupled directed-percolation processes. It is convenien
represent these processes in the framework of reac
diffusion systems. The starting point of the hierarchy
coupled systems is therefore the following reaction sche
which can be viewed as the prototype for the acti
absorbing state transitions in the directed-percolation uni
sality class@13#:

A→A1A with rate sA , ~2.1!

A→0 with rate mA , ~2.2!

A1A→A with rate lA . ~2.3!

We can immediately write down the corresponding r
equations for the particle densitynA(t); this description ne-
glects fluctuation and correlation effects, and therefore c
responds to a mean-field approximation. The average par
number is increased via the branching reaction~2.1!, and
reduced via both the decay~2.2! and coagulation~2.3!. How-
ever, while the first two processes occur spontaneously,
ratessA and mA , respectively, and therefore the change
particle number is proportional to the particle density itse
the coagulation reaction requires that two particlesA meet on
the same lattice site~in a discrete representation!, and hence
the total particle loss due to the process~2.3! is proportional
to the density squared. This yields the balance equation

]nA~ t !

]t
5~sA2mA!nA~ t !2lAnA~ t !2. ~2.4!

As we are considering local reactions only, we may gene
ize this mean-field equation slightly by considering a coar
grained local particle densitynA(x,t), and supplementing
Eq. ~2.4! with a diffusion term,

]nA~x,t !

]t
5D~¹22r A!nA~x,t !2lAnA~x,t !2. ~2.5!

Here we have introduced the diffusion constantD, and de-
fined r A5(mA2sA)/D.

Obviously, the mean-field dynamic phase transition
curs at the pointr A50, where the balance of gain and lo
due to the processes linear innA changes sign. Forr A.0, the
only stationary state of Eq.~2.5! is nA50, and fort→` the
particle density will simply decay to zero according
nA(t)→e2Dr At, because once the particle density has
e,
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come sufficiently small, the coagulation contribution can
neglected. Furthermore,nA50 represents an absorbin
phase, because once there are no particles left in the sys
none of the processes~2.1!–~2.3! can happen any longer—
hence all fluctuations cease, and the system cannot es
from this state. Forr A,0, on the other hand, there is anoth
stationary state with nonzero particle density

nA5Dur Au/lA , ~2.6!

which can be viewed as the order parameter of the ac
phase. In the active state, the asymptotic density is
proached exponentially again, with the characteristic r
Dur Au. Precisely at the transition, only the term proportion
to nA

2 survives in Eq.~2.5!, which therefore becomes ident
cal to the mean-field rate equation for diffusion-limited c
agulation or annihilation@6#. The solution to Eq.~2.4! then
becomes

nA~ t !;1/t, ~2.7!

i.e., the density decays according to a power law at the c
cal point.

Upon identifyingr A5pc2p, wherepc denotes the perco
lation threshold, we can translate the above mean-field
sults to the notation of directed percolation. Equation~2.5!
implies that the characteristic length scalej'5ur Au21/2 di-
verges in the vicinity of the transition,

j';ur Au2n', n'51/2. ~2.8!

At the critical point, the exponential decay rates vanish, a
the characteristic frequency becomes diffusive,vc;Dq2;
hence

vc;qz, z52. ~2.9!

Equivalently, upon approaching the critical point, the ch
acteristic time scale diverges according to

j i;ur Au2n i, n i[zn'51. ~2.10!

Also, at p5pc ,

nA~ t !;t2a, a51. ~2.11!

Finally, in the active phase near the transition, the order
rameter grows as

nA;ur Aub, b51. ~2.12!

Notice that the exponentsa andb are related, provided the
following scaling relation holds:

nA~r A ,x,t !5ur Aubn̂A~x/j' ,t/j i!. ~2.13!

For then atp5pc , n̂A(0,y);y2b/n i in the limit y→`, in
order for theur Au dependence to cancel, and thus

b[n ia[zn'a. ~2.14!

The above relations therefore definethree independent criti-
cal exponents. Alternatively, the third independent expon
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may be swapped forh' , which characterizes how the equa
time pair correlation function decays at the critical pointr A
50, G(uxu)}1/uxud1z221h'.

While the scaling relation~2.14! remains valid also below
the upper critical dimension, which for DP turns out to
dc54 ~see Sec. III!, the exponent values will become mod
fied for d,dc as a consequence of strong fluctuation effec
Directly at the critical dimension, one expects logarithm
corrections to the above mean-field results.

The idea is now to combine several~say a numberk) of
such DP processes, i.e., to consider the additional react

B→B1B with rate sB , ~2.15!

B→0 with rate mB , ~2.16!

B1B→B with rate lB , ~2.17!

for particle speciesB,C, . . . , which are coupledunidirec-
tionally via the transformation reactions

A→B with rate mAB , ~2.18!

A→C with rate mAC , ~2.19!

B→C with rate mBC , ~2.20!

etc., butwithout feedback, i.e., we do not allow processes o
the typeB→A. This prescription therefore defines ahierar-
chical structureof coupled DP processes. For simplicity, w
choose identical diffusion constantsD on each hierarchy
level.

Without the coupling reactions~2.18!, . . . , for each spe-
cies of particles there is a continuous DP transition atr i
50, i 5A,B, . . . . But the situation changes in an interesti
way when the transformation processes are switched on~ex-
cept for speciesA, which is not influenced by what happen
on the higher hierarchy levels!. Let us first consider the sim
plest case of two particle species (k52)—the generalization
to further hierarchy levels will then be straightforward. T
mean-field rate equation~2.5! for speciesA remains un-
changed, albeit with a modified parameter

r A5~mA1mAB2sA!/D. ~2.21!

Note that for the first hierarchy level, the sole effect of t
transformation reactions is an increase of the total decay
mA

tot5mA1( imAi .
The rate equation for speciesB, however, contains a new

gain term describing the feeding-in of particles via the re
tion ~2.18!, proportional to the density ofA particles present
Thus one obtains

]nB~x,t !

]t
5D~¹22r B!nB~x,t !2lBnB~x,t !21mABnA~x,t !,

~2.22!

where

r B5~mB2sB!/D. ~2.23!

Note that within themean-fieldapproximation,nA plainly
acts as an external source term. Once fluctuations are im
.

s

te

-

or-

tant, however, i.e., ford,dc54, such a simple picture
breaks down, especially at the multicritical point to be d
cussed below, where the averages and correlations ofboth
nA(x,t) andnB(x,t) are governed by power laws.

We may now again search for a stationary solutionnB of
Eq. ~2.22!, as a function of the mean-field densitynA . The
general solution of the ensuing quadratic equation is

nB5F S Dr B

2lB
D 2

1
mAB

lB
nAG1/2

2
Dr B

2lB
. ~2.24!

Thus, for r A.0, where nA50, one finds nB5D(ur Bu
2r B)/2lB , which is zero forr B.0, and becomes equal t
nB5Dur Bu/lB for r B,0. When speciesA is in the inactive
phase, theA and B hierarchy levels are effectively decou
pled, and we therefore expect an ordinary DP acti
absorbing transition for speciesB at r B50, as in the case
mAB50.

For r A,0, on the other hand, we have to insert Eq.~2.6!
into Eq. ~2.24!. One may now distinguish two situations.

~i! For (Dr B /2lB)2@Dur AumAB /lAlB , we can approxi-
mate

nB'
Dur Bu
2lB

F11
Dur AumAB

2lAlB
S 2lB

Dr B
D 2G2

Dr B

2lB
, ~2.25!

and consequently forr B,0, we find thatnB.0, and theB
species is in its active state—the DP transition at the half
(r A,0,r B50) present in the uncoupled system has dis
peared~see Fig. 1!. Instead, forr B.0 the terms proportiona
to r B cancel in Eq.~2.25!, and

nB'ur AumAB /lAr B , ~2.26!

i.e., the density of speciesB vanishes as the critical poin
r A50 of speciesA is approached, and with the mean-fie
DP exponentb51. Effectively, the DP critical half line
(r A,0,r B50) for speciesB has been rotated to (r A50,r B
.0) in the coupled system. The location of the DP critic
lines for both speciesA andB is shown in the phase diagram
of Fig. 1, where the dotted parabola represents the boun

FIG. 1. Mean-field phase diagram for the two-level coupled
process. The arrows mark DP active/absorbing transitions for thA
andB particle species, respectively. The dotted parabola denote
boundary of the multicritical regime, which includesur Au5ur Bu
5ur u→0.
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curve separating the two different regimes forr A,0. Notice
also that in this case the ‘‘mass’’ terms~the contributions
linear in nA ,nB) in Eq. ~2.22! vanish, and one expects bo
spatial and temporal power-law correlations, obviously ch
acterized byn'51/2 andz52. We shall later see that indee
the new critical half line (r A50,r B.0) for speciesB is in
the DP university class. Summarizing this regime, we m
say that theB particles are ‘‘slaved’’ by the behavior of theA
species.

~ii ! The other regime, inside the dotted parabola
Fig. 1, is defined by the condition (Dr B /2lB)2

!Dur AumAB /lAlB , which includes the special case whe
the critical points of both hierarchy levels are approach
uniformly, ur Au5ur Bu5ur u→0. Now we can neglect the
terms;r B in Eq. ~2.24!, which yields

nB'S Dur AumAB

lAlB
D 1/2

5S mAB

lB
nAD 1/2

. ~2.27!

This implies that the density exponents on each hierar
level i aredifferent in this regime,

ni'ur Aub i, ~2.28!

where b15bA51 and b25bB51/2 in the mean-field ap
proximation. It is to be expected, however, that the ot
independent scaling exponentsn' and z remain unaltered;
but of course the density decay exponent at the critical p
a i will depend on the hierarchy leveli, according to Eq.
~2.14!,

ni~ t !;t2a i, a i[b i /zn' . ~2.29!

Considering the two-species phase diagram~Fig. 1! again,
we see thatthree critical half lines converge at the speci
point r A5r B50. The new critical behavior in this regim
can therefore be interpreted as the effect of amulticritical
point @16#. When this special point in the phase diagram
approached along a line crossing the dotted parabola in
1, one expects acrossoverfrom ordinary DP to the new
multicritical behavior described by the density exponentsb i
and a i . For ur Au5ur Bu5ur u→0, the crossover features a
all encoded in the generalized scaling function

nB~r ,mAB ,x,t !5ur ub1n̂A~ ur u2fmAB /D,x/j' ,t/j i!,
~2.30!

wherej';ur u2n' andj i;ur u2n i as in DP. This defines the
crossover exponentf, which constitutes a new scaling ex
ponent associated with the couplingmAB . Comparing with
Eq. ~2.24!, we identify

f51 ~2.31!

within the mean-field approximation. Furthermore, we c
use the above mean-field results, which, at the multicrit
point, imply thatn̂(y,0,0);y1/2 for y→`. Consequently, we
have

b25b12f/2, ~2.32!

which relates the new density exponentb2 to the indepen-
dent crossover exponentf. Of course, Eq.~2.32! is satisfied
r-

y

d

y

r

nt

s
ig.

n
l

by the mean-field values. In the fluctuation-dominated
gime d,dc54, however, there will in general beO(e54
2d) corrections to both the critical exponentsand the scal-
ing functions, which will in turn lead to a modification of th
scaling relation~2.32!.

One may now readily generalize to higher hierarchy le
els. For example, fork53, one finds the same rate equatio
~2.5! and~2.22! for speciesA andB, respectively, but where
now r A5(mA1mAB1mAC2sA)/D and r B5(mB1mBC
2sB)/D. The mean-field equation fornC(x,t) reads

]nC~x,t !

]t
5D~¹22r C!nC~x,t !2lCnC~x,t !21mBCnB~x,t !

1mACnA~x,t !, ~2.33!

which has the general stationary solution

nC5F S Dr C

2lC
D 2

1
mBC

lC
nB1

mAC

lC
nAG1/2

2
Dr C

2lC
. ~2.34!

A detailed analysis then reveals that, in analogy with
two-level hierarchy, there are regions in phase space wh
the C species evolves independently of the lower hierarc
levels. On the other hand, other regimes exist wherenC is
slaved by eithernA or nB . In addition, as before, a new DP
transition may arise for theC particles under appropriat
conditions, whenr A→0 or r B→0. Furthermore, the previou
k52 multicritical regime occurs when eitherr A.0 and
ur Bu5ur Cu→0 simultaneously, orr B.0 andur Au5ur Cu→0.

As all these features are already contained in our ab
investigation of the two-level coupled DP process, we
strict ourselves to the new behavior emerging fork53, when
all three critical points coincide, i.e.,ur Au5ur Bu5ur Cu5ur u
→0. More generally, in mean-field theory this multicritic
regime~with altogethersevencritical quarter planes merging
at r 50) is characterized by the conditionsr A,0,
(Dr B /2lB)2!Dur AumAB /lAlB ~as for k52), and
(Dr C /2lC)2!mBC(Dur AumAB /lAlB)1/2/lC
1Dur AumAC /lAlC . At this special point in parameter spac
nA and nB vanish as in Eqs.~2.6! and ~2.27!, respectively,
while

nC'S Dur umABmBC
2

lAlBlC
2 D 1/4

5S mBC

lC
nBD 1/2

. ~2.35!

Therefore b35bC51/4 in the mean-field approximation
Notice also that the indirectA→C transformation ratemAC
doesnot enter this expression~2.35!, which only depends on
the coupling ratesmAB andmBC betweenadjacenthierarchy
levels. As the latter are not at all influenced by the prese
of lower levels, this would suggest that there existsonly one
crossover exponentf describing all the multicritical points
generated by the unidirectional coupling of the DP proces
~with f51 in mean-field theory!.

For the density exponents, we conclude that within
mean-field approximation on hierarchy leveli, using n i
[zn'51,

a i5b i51/2i 21. ~2.36!
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This result should describe the coupled DP multicritic
point quantitatively correctly for spatial dimensionsd.dc
54. Furthermore, on the mean-field level the scaling relat
~2.32! generalizes to

b i5b i 212f/2i 215b12f~121/2i 21!, ~2.37!

compare Eq.~2.35!. Here the observation that only the dire
transformation rates between neighboring hierarchy lev
affect the leading contribution has entered crucially. Aga
the mean-field results~2.36! and ~2.31! satisfy Eq. ~2.37!
trivially. However, as noted above, the scaling relation~2.37!
will be modified below the upper critical dimensiondc54,
as a consequence ofO(e542d) corrections to the scaling
function for the equations of state,ni(r ).

III. RENORMALIZATION-GROUP CALCULATIONS

A. Preliminaries

We now turn to a detailed presentation of our fie
theoretic calculations. As we have pointed out in the pre
ous sections, the effects of fluctuations invalidate a sim
mean-field approach for dimensionsd,dc54. For that rea-
son we will employ field-theoretic renormalization-grou
methods, which allow for both a proper derivation of scalin
as well as a systematice-expansion calculation of critica
exponents, below the upper critical dimensiondc54.

Our starting point for a systematic treatment of t
coupled-DP reaction scheme given by Eqs.~2.1!–~2.3! and
~2.15!–~2.18! is an appropriate master equation. On a mic
scopic level this comprises an exact description of the
namics. From this equation it is then a straightforward p
cess to derive an effective field theory: First the mas
equation is mapped onto a second-quantized bosonic op
tor representation, which is in turn mapped onto a boso
field theory. This procedure is now standard, and we refe
Ref. @8# for further details. In our case, for the two-speci
coupled DP system we end up with the following action:

S5E ddxE dt$ā@] t1D~r A2¹2!#a2sAā2a

1lA~ āa21ā2a2!2mABb̄a1b̄@] t1D~r B2¹2!#b

2sBb̄2b1lB~ b̄b21b̄2b2!%, ~3.1!

where we have omitted terms related to the initial sta
Aside from the taking of the continuum limit, the derivatio
of this action isexact, and in particular no assumptions r
garding the precise form of the noise are required. Note
if we neglect the terms in the action~3.1! quadratic in the
response fieldsā, b̄, then we recover a description identic
to the mean-field equations~2.5! and ~2.22!, provided we
associate the fieldsa(x,t), b(x,t) with the coarse-grained
local densities of theA, B particles. In general, howeve
below the upper critical dimensiondc54, the terms qua-
dratic in ā, b̄ ~corresponding to noise in a Langevin descr
tion! cannot be neglected.

It is now convenient to rescale the fields according toā

5(lA /sA)1/2c̄0 , a5(sA /lA)1/2c0 , b̄5(lB /sB)1/2w̄0 , b
5(sB /lB)1/2w0, and also define new couplingsu0
l

n

ls
,

i-
le

,

-
-
-
r
ra-
ic
to

.

at

-

52(sAlA)1/2, u0852(sBlB)1/2, as well as m0

5mAB(sAlB /sBlA)1/2 ~henceforth, the subscript ‘‘0’’ de-
notes unrenormalized quantities!. If we introduce a length
scale k21 and correspondingly measure times in units
k22 ~i.e., @D0#5k0), we find that the new fields have sca
ing dimensionkd/2, while @r A#5@r B#5@m0#5k2, which are
thus relevant perturbations in the RG sense. On the o
hand,@u0#5@u08#5k22d/2, and the corresponding DP nonlin
earities become marginal indc54 dimensions, as expecte
@13#. It is important to note, however, that@lA#5@lB#
5k22d, and hence these couplings areirrelevant as com-
pared tou0 and u08 , and may be omitted in the effectiv
action. Finally, we setu085u0, such that the theory remain
renormalizable with equal diffusion constants, and con
quently we arrive at

Seff5E ddxE dtH c̄0@] t1D0~r A2¹2!#c0

2
u0

2
~ c̄0

2c02c̄0c0
2!2m0w̄0c0

1w̄0@] t1D0~r B2¹2!#w02
u0

2
~ w̄0

2w02w̄0w0
2!J .

~3.2!

We remark that this action is equivalent to the following s
of coupled Langevin equations:

] tc05D0~¹22r A!c02
u0

2
c0

21z, ~3.3!

] tw05D0~¹22r B!w02
u0

2
w0

21m0c01h, ~3.4!

which represent the obvious and expected generalization
the mean-field equations~2.5! and ~2.22!, with the multipli-
cative Langevin noise terms

^z~x,t !z~x8,t8!&5u0c0~x,t !dd~x2x8!d~ t2t8!,
~3.5!

^h~x,t !h~x8,t8!&5u0w0~x,t !dd~x2x8!d~ t2t8!.
~3.6!

Furthermore, for most of the analysis we will setr A5r B
5r 0. There are several ways in which the effective acti
~3.2! can be studied. We will begin by performing our anal
sis in the inactive phase, and postpone other methods~in-
cluding diagonalization and active phase computations! until
later on. Inspection of the above action~3.2! reveals that, as
expected, the terms involving only thec and c̄ fields are
exactly the same as in the well-known field theory for d
rected percolation~Reggeon field theory! @13#, and their
renormalization is entirely unaffected by the presence of
w andw̄ fields. Hence we will begin by briefly reviewing th
analysis of Reggeon field theory~RFT! in the inactive phase
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B. DP field theory: Inactive phase calculation

The renormalization of the RFT action is very well know
~see Ref.@19#!. The renormalized parameters are defined
follows:

c5Zc
1/2c0 , c̄5Zc

1/2c̄0 t5Ztt0k22,
~3.7!

D5ZDD0 , u5Zuu0Ad
1/2k2e/2,

with e542d, Ad5G(32d/2)/2d21pd/2, and t05r 02r 0c ,
wherer 0c is the fluctuation-induced shift of the critical poin
From the diagrams for the two- and three-point vertex fu
tions ~see Fig. 2!, we can determine the one-loop renorm
ized Z factors. Using dimensional regularization and a mi
mal subtraction scheme, the results are

Zc512
u0

2

8D0
2

Adk2e

e
, ~3.8!

ZD511
u0

2

16D0
2

Adk2e

e
, ~3.9!

Zt512
3u0

2

16D0
2

Adk2e

e
, ~3.10!

Zu512
5u0

2

16D0
2

Adk2e

e
, ~3.11!

with r 0c given by the recursive equation

r 0c52
u0

2

4D0
2E

p

1

r 0c1p2
, ~3.12!

where we have used the abbreviation*p . . .
5*•••ddp/(2p)d. Defining the flow functions zu
5k]k ln(u/u0), etc., and with an effective couplingv
5u2/16D2, the RGb function has the form

bv5k]kv52v~zu2zD!5v~2e112v !, ~3.13!

giving a stable, nontrivial fixed pointv* 5e/121O(e2).
The appropriate renormalization-group equation for

renormalized field̂ cR&, where the angular brackets deno
averaging with respect to the RFT action, is

FIG. 2. Diagrams for the two- and three-point vertex functio
to one-loop order for the pure DP field theory.
s

-
-
-

e

S k
]

]k
1ztt

]

]t
1zDD

]

]D
1zvv

]

]v
2

1

2
zcD

3^cR~k,t,D,v,x,t !&50. ~3.14!

Defining the dimensionless fieldĉ as

^cR~k,t,D,v,x,t !&5kd/2ĉ~t,v,kx,k2Dt !, ~3.15!

the solution of Eq.~3.14!, obtained by means of the metho
of characteristicsk→kl , when the couplingv has run to its
fixed point valuev* is

^cR~k,t,D,v,x,t !&5kd/2l (d2zc* )/2

3ĉ~tl zt* ,v* ,kxl ,k2Dtl 21zD* !.

~3.16!

By inserting the matching conditionl 5utu21/zt* , we can
now derivethe scaling relation~2.13! quoted in the previous
section. At the fixed point, we obtain

^cR~k,t,D,v,x,t !&5utubĉS v* ,
kx

utu2n'
,
k2Dt

utu2n i
D ,

~3.17!

where the exponents can be identified as combinations o
z functions evaluated at the nontrivial fixed point:

h'52zD* 2zc* 52
e

12
1O~e2!, ~3.18!

n'5
1

2zt*
5

1

2
1

e

16
1O~e2!, ~3.19!

n i5
21zD*

2zt*
511

e

12
1O~e2!, ~3.20!

z5
n i

n'

521zD* 522
e

12
1O~e2!, ~3.21!

b5
d2zc*

22zt*
5

n'

2
~d1z221h'!512

e

6
1O~e2!.

~3.22!

Directly at the upper critical dimensiondc54 (e50),
the power laws with these critical exponents are repla
with logarithmic corrections to the mean-field resultsh'

50, n'51/2, n i51, z52, andb51 ~see also Ref.@20#!.
The flow equation forv(l ) becomesl dv(l )/dl 5bv(l )
512v(l )2, which is solved byv(l )5v@1212v ln l #21,
where v5v(l 51). Similarly, l dD(l )/dl 5zD(l )D(l )
52vD(l )@1212v ln l #21 has the solutionD(l )5D@1
212v ln l #1/12, and l dt(l )/dl 5zt(l )t(l )5(22
13v@1212v ln l #21)t(l ) is solved by t(l )5tl 22@1
212v ln l #21/4. We now integrate the flow equations un
ut(l )u51, or l ;utu1/2(2 lnutu)21/8. This yields immediately
the divergence of both the correlation lengthj' and the char-
acteristic time scalej i upon approaching the phase tran
tion,
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j';l 21'utu21/2~2 lnutu!1/8, ~3.23!

j i;l 22D~ l !21'utu21~2 lnutu!1/6. ~3.24!

In order to obtain the corresponding logarithmic correct
for the density exponentb, we employ the solution~3.16! of
the RG equation and the mean-field result~2.6!, and find

^cR~k,t,D,v !&;kd/2l d/2C~ l !21/2
ut~ l !u

v~ l !1/2
, ~3.25!

where C(l )5exp„*1
l zc(l 8)dl 8/l 8…, or equivalently,

l dC(l )/dl 5zc(l )C(l )52vC(l )@1212v ln l #21, with
the solution C(l )5@1212v ln l #21/6. Combining every-
thing, and settingd54 in Eq. ~3.25! finally yields

^cR&;utu~2 lnutu!1/3. ~3.26!

Notice that we had to take care and keep track of the d
gerous irrelevant variablev here.

C. Coupled DP field theory: Inactive phase

We now return to the renormalization of the coupled D
field theory. Right from the outset we must take into acco
one key feature of the full theory—namely that, on physi
grounds, one expects the generation ofadditional mixed cu-
bic vertices. Physically, these novel vertices correspond
the additionally generated processesA→A1B, A→B1B,
A1A→B, andA1B→A, with ratessAB , sAB8 , lAB , and
lAB8 , say. These vertices must be introduced from the v
beginning, and hence we have to replace the above ac
~3.2! with SMC5Seff1DS, where

DS5E ddxE dtF2s0w̄0c̄0c02
s08

2
w̄0

2c01
s̃0

2
w̄0c0

2

1 s̃08w̄0w0c0G . ~3.27!

Note that in the shifted theory used above, the new reac
processes also modify the bare parametersr A , m0, andu0,
and furthermore lead to the identifications0;sAB>0, s08

;sAB8 >0, s̃0;2lAB<0, ands̃08;lAB8 >0. In the effective
Langevin-type description, Eqs.~3.3!–~3.6! are then replaced
by

] tc05D0~¹22r A!c02
u0

2
c0

21z, ~3.28!

] tw05D0~¹22r B!w02
u0

2
w0

22
s̃0

2
c0

22 s̃08c0w01m0c01h,

~3.29!

where the noise terms satisfy

z~x,t !5aj1~x,t !, ~3.30!

h~x,t !5bj2~x,t !1cj1~x,t !. ~3.31!

Here j1 and j2 are uncorrelated white noise variables
variance 1, and the coefficientsa, b, andc satisfy
n-

t
l

to

y
on

n

a25u0c0 , ~3.32!

b25u0w01S s082
s0

2

u0
Dc0 , ~3.33!

c25
s0

2

u0
c0 . ~3.34!

The complete vertices of the full actionSMC are depicted in
Fig. 3. The propagators for thec andw fields are denoted by
solid and dashed lines, respectively. The next task is to c
pute the renormalized couplings and RG fixed points of
full theory. To begin with, we notice that the DP couplings
the action~3.2! are renormalized in the same way as in RF
i.e., the factorsZc5Zw , Zt , ZD , andZu are identical with
those in Eqs.~3.8!–~3.11!. Hence we can conclude that th
stable fixed points for the dimensionless renormalized c
pling u5Zuu0Ad

1/2k2e/2 reads as in DP:

v* 5@~u/4D !* #25e/121O~e2!. ~3.35!

For this reason, the critical exponentsh' , n' , andz remain
those of the DP universality class for the second hierar
level ~i.e., for theB species!, and in fact for higher hierarchy
levels as well.

However, the same willnot be true for the exponentsb i
~for i .1). For example, the exponentb2 is affected by the
renormalization ofm0, and hence only the exponentb1 will
remain the same as in DP. In order to compute the renorm
ization of m0, we must consider the diagrams renormalizi
the ‘‘mixed’’ two-point vertex functionGw̄c , as depicted in
Fig. 4. At the normalization point~NP! q5v50, t51, we
find

Gw̄c
NP

52m0F12
u0~s01 s̃08!

4D0
2 E

p

1

~k21p2!2

2
u0

2m0

8D0
3 E

p

1

~k21p2!3

2
2s0s̃081u0~s081 s̃0!

4D0m0
E

p

1

k21p2G . ~3.36!

Notice that the integral in the last term of Eq.~3.36! diverges
in d52. In the same way as in the shift of the percolati

FIG. 3. The vertices of the full actionSMC .
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threshold in DP, see Eq.~3.12!, we may take care of this UV
divergence by means of an additive renormalization, a
then multiplicatively renormalize the UV poles ind54.
Thus, defining the dimensionless renormalized coupling

m5Zm~m02m0c!k
22, ~3.37!

with the associated flow functionzm5k]kln(m/m0), we have

m0c5
2s0s̃081u0~s081 s̃0!

4D0
E

p

1

k21p2 ~3.38!

and

~ZcZw!1/2Zm512
u0~s01 s̃08!

4D0
2 E

p

1

~k21p2!2

2
u0

2m0

8D0
3 E

p

1

~k21p2!3. ~3.39!

We will see later that the prefactor multiplying the shiftm0c
in Eq. ~3.38!, which involves the various mixed three-poi
couplings, actually vanishes in an appropriate parameter
space containingboth emerging fixed lines, see below. I
principle, additional additive renormalizations would be r
quired to render]q2Gw̄c

NP and ]vGw̄c
NP UV-finite. These coun-

terterms, to be added to the action~3.2!, would be of the
form

E ddxE dtw̄~A] t2B¹2!c. ~3.40!

However, as bothA andB are again proportional to the pre
actor of the integral in Eq.~3.38!, they all vanish at the fixed
lines to be discussed later. A subtle point which can be ra
concerning these counterterms is the stability of the sca
behavior of the theory~in other words the stability of the
fixed lines to be derived later on! against the introduction o
a term like Eq.~3.40! into the original action~3.2!. Since this
paper was submitted for publication, Janssen@21# has shown
that indeed the scaling behavior is unaffected by the in
duction of such terms, and thusm0 is the only mixed cou-
pling constant that needs to be introduced.

FIG. 4. ‘‘Mixed’’ two-point vertex functionGw̄c to one-loop
order for the coupled DP field theory.
d

b-

-

d
g

-

Note also that the final diagram in Fig. 4@see the second
lines of Eqs.~3.36! and ~3.39!# is UV-finite in d54, and so
for the moment we shall neglect it in aminimal subtraction
scheme~this is, however, a somewhat subtle point in t
active phase, which will be discussed in more detail in S
III F !. Certainly, form!1, i.e., in an additional expansion i
the transmutation ratem, this diagram is suppressed as com
pared to the other contributions. We then find

Zm511S u0
2

8D0
2 2

u0~s01 s̃08!

4D0
2 D Adk2e

e
, ~3.41!

and after definingg5s/D and g̃85 s̃8/D, we have

zm52222v1Av~g1g̃8!5222
e

6
1

1

2
Ae

3
~g* 1g̃8* !,

~3.42!

where in the second line we have inserted the DP fixed p
~3.35!.

An inspection of Eq.~3.36! now shows that, in order to
compute the renormalization ofm0, we must first consider
the renormalization of the various mixed three-point co
plings,

s5Zss0Ad
1/2k2e/2, s85Zs8s08Ad

1/2k2e/2,

s̃5Zs̃s̃0Ad
1/2k2e/2, s̃85Zs̃8s̃08Ad

1/2k2e/2. ~3.43!

Evaluating first the renormalization ofs8, which can be cal-
culated from the diagrams shown in Fig. 5~a!, we find

Gw̄w̄cR

NP
5

2s8Ad
21/2ke/2

Zc
1/2ZwZs8

F12S u0s0s̃0

s08
1u0s01u0

21u0s̃08

1
u0s0s̃08

s08
1

s0
2s̃08

s08
D 1

2D0
2 E

p

1

~k21p2!2G . ~3.44!

Inserting the appropriate expressions forZc andZw from Eq.
~3.8! and using*p(k21p2)225Adk2e/e, we end up with

FIG. 5. The ‘‘mixed’’ three-point vertex functions~a! Gw̄w̄c and
~b! Gw̄c̄c to one-loop order.
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Zs8511F2
5u0

2

16D0
2 2

u0s0

2D0
22

u0s0s̃0

2s08D0
2

2
u0s̃08

2D0
2

2
u0s0s̃08

2s08D0
2

2
s0

2s̃08

2s08D0
2G Adk2e

e
. ~3.45!

Similarly, with the aid of the diagrams shown in Fig. 5~b!
and Fig. 6, we can compute theZ factors for the other mixed
three-point couplings,

Zs511F2
u0

2

16D0
2 2

u0s0

4D0
22

u0
2s̃0

4s0D0
2

2
u0s̃08

2D0
2G Adk2e

e
,

~3.46!

Zs̃511F2
5u0

2

16D0
2 2

u0s0

2D0
2 2

u0s̃08

2D0
2

2
u0s̃08s0

2s̃0D0
2

2
u0s08s̃08

2s̃0D0
2

2
s̃08

2s0

2s̃0D0
2G Adk2e

e
, ~3.47!

Zs̃8511F2
u0

2

16D0
2 2

u0
2s08

4s̃08D0
2

2
u0s0

4D0
22

u0s̃08

4D0
2GAdk2e

e
.

~3.48!

We note in passing that, in principle, a product of the qua
vertices @which we previously discarded from the actio
~3.1!# and m0 might also enter the renormalizations of th
three-point functions. However, we have checked that th
additional couplings all have negative RG eigenvalues
are therefore irrelevant.

With the definitionsg5s/D, g85s8/D, g̃5 s̃/D, and g̃8

5 s̃8/D, it is now straightforward to compute the RGb func-
tions for these new variables. Since we havebg5k]kg
5g(zs2zD), etc., wherezs5k]k ln(s/s0), etc., we find to
one-loop order

FIG. 6. The ‘‘mixed’’ three-point vertex functions~a! Gw̄cc and
~b! Gw̄cw to one-loop order.
c

se
d

bg52
e

3
~g2g̃!1Ae

3
gS 1

2
g1g̃8D , ~3.49!

bg85Ae

3
g~g81g̃!1Ae

3
g̃8~g1g8!1

1

2
g2g̃8,

~3.50!

b g̃5Ae

3
g~ g̃1g̃8!1Ae

3
g̃8~g81g̃!1

1

2
g̃82g,

~3.51!

b g̃85
e

3
~g82g̃8!1Ae

3
g̃8S g1

1

2
g̃8D , ~3.52!

where we have already inserted the one-loop fixed po
value forv* 5@(u/4D)* #2. Note the symmetry of the abov
RG b functions with respect to exchangingg↔g̃8 and
g8↔g̃. We now search for fixed-point solutions of the abo
equations wherebg* 5bg8

* 5b g̃
* 5b g̃8

* 50. Using Eqs.~3.49!

and ~3.52! to eliminateg̃ andg8 from the remaining twob
functions, the above system of equations can be solved
actly. After some tedious algebra, we find twofixed-lineso-
lutions, the first one being

g* 52g̃8* , g̃* 2g8* 52g* ,

g* 252Ae

3
~g* 1g8* !. ~3.53!

Computing the eigenvalues of the stability matrix

]bg

]d
with $g%,$d%5$g,g8,g̃,g̃8% ~3.54!

yields the eigenvalues 0, 0,2e/3, 2e/3. Hence, this first
fixed line, which includes the Gaussian fixed points for t
mixed three-point couplings, isunstable. The second fixed
line is given by

g8* 5g̃* , g* 1g̃8* 52Ae

3
,

~3.55!

g* 252Ae

3
~g* 1g8* !,

with stability matrix eigenvalues 0,e/3, e/3, 4e/3. Hence
this second fixed line isstable. Notice also thatboth of the
above fixed lines satisfy the condition

Ae

3
~g8* 1g̃* !52g* g̃8* , ~3.56!

which ensures the cancellation of the strongly singular~UV-
divergent ind52) diagrams for the renormalization ofm0 in
Eq. ~3.36!.

We can now insert the values ofg* 1g̃8* at the two fixed
lines ~3.53! and~3.55!, respectively, into Eq.~3.42!, and thus
obtain
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zm* 5H 221e/61O~e2! ~stable line!,

222e/61O~e2! ~unstable line! .
~3.57!

We are now in a position toderive the scaling form~2.30!
for theB species density, postulated in the preceding sect
We begin by writing down the renormalization-group equ
tion for the renormalized field̂ wR&, where the angular
brackets denote averaging with respect to the full act
SMC ,

S k
]

]k
1ztt

]

]t
1zDD

]

]D
1zvv

]

]v
1zgg

]

]g
1zg8g8

]

]g8

1z g̃g̃
]

]g̃
1z g̃8g̃8

]

]g̃8
1zmm

]

]m
2

1

2
zwD

3^wR~k,t,D,v,$g%,m,x,t !&50, ~3.58!

and where we have used the notation$g%5$g,g8,g̃,g̃8%. De-
fining the dimensionless fieldŵ as

^wR~k,t,D,v,$g%,m,x,t !&

5kd/2ŵ~t,v,$g%,m/D,kx,k2Dt !, ~3.59!

the solution of Eq.~3.58! when the couplingsv,$g% have run
to their fixed-point/line values is

^wR~k,t,D,v,$g%,m,x,t !&

5kd/2l (d2zw* )/2

3ŵ~tl zt* ,v* ,$g* %,~m/D !l zm* 2zD* ,

kxl ,k2Dtl 21zD* !. ~3.60!

Inserting the matching conditionl 5utu21/zt* , and dropping
the v,$g% couplings, we obtain

^wR~k,t,D,m,x,t !&

}utu2(d2zw* )/2zt* ŵ„~m/D !utu2(zm* 2zD* )/zt* ,kxutu21/zt* ,

k2Dtutu2(21zD* )/zt*
…. ~3.61!

Identifying b15b52(d2zw* )/2zt* , n'521/zt* , n i5

2(21zD* )/zt* and defining the crossover exponent asf
5(zm* 2zD* )/zt* , we have

^wR~k,t,D,m,x,t !&}utub1ŵS m/D

utuf
,

kx

utu2n'
,

k2Dt

utu2n i
D ,

~3.62!

in agreement with the scaling hypothesis~2.30! postulated in
the preceding section. Using our earlier results for thez*
functions, we find

f5H 11O~e2! ~stable line!,

11e/61O~e2! ~unstable line!.
~3.63!

Notice the absence ofO(e) contributions tof at the stable
fixed line, which is due to remarkable cancellations. This
n.
-

n

f

course also implies that there are no logarithmic correcti
to the crossover exponentf in dc54 dimensions.

The final step in this calculation is now to compute t
exponentb2. Unfortunately, in order to do this, we must firs
understand the behavior of the scaling function~3.62! in the
active phase. As we shall see, it contributes nontrivial c
rections to the exponentb2 at O(e). Hence it isnot sufficient
simply to match the scaling function to that calculated
mean-field theory@22#—such a procedure would miss the
O(e) corrections. However, before dealing further with th
active phase calculation for theB species, we first discuss th
simpler problem of pure DP in the active phase, which a
applies to the first level~the A particles! of the coupled DP
problem.

D. DP field theory: Active phase calculation

In this section, we will review the one-loop calculation
the expectation value of the field in the active phase for
case of a single field, i.e., the case of~decoupled! directed
percolation. In this way we can obtain an expression for
critical exponentb15b @23#.

We start with the action for a single field~see Sec. III A!,

SDP5E ddxE dtH c̄0@] t1D0~r 02¹2!#c0

2
u0

2
~ c̄0

2c02c̄0c0
2!J . ~3.64!

In the active phase (r 0,0) the expectation value of the fiel
c0 is nonzero, and we define a shifted fieldcc0 by

c05v01cc0 , ~3.65!

to obtain the new action

SDP8 5E ddxE dt$c̄0~] tcc02D0¹2cc01D0r 0cc0!

1c̄0~D0r 0v01 1
2 u0v0

2!2 1
2 u0v0c̄0

21u0v0c̄0cc0

1 1
2 u0~cc02c̄0!c̄0cc0%. ~3.66!

We now fix v0 by equating the coefficient ofc̄0 to zero.
Thus

v052
2D0r 0

u0
5

2D0ur 0u
u0

, ~3.67!

wherev0 is the classical~mean-field! value of the expecta-
tion value of the field. Substituting these values into E
~3.66!, we obtain

SDP8 5E ddxE dtF c̄0~] tcc02D0¹2cc01D0ur 0ucc0!

1
1

2
u0~cc02c̄0!c̄0cc02D0ur 0uc̄0

2G . ~3.68!

In the following we will definet0[2r 0. From Eq.~3.65! it
follows that
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^c0&5v01^cc0&. ~3.69!

There is only one diagram contributing to the expectat
value ^cc0& to one-loop order, and it is depicted in Fig.
We thus find, using dimensional regularization,

^c0&5
2D0t0

u0
2

1

2

u0

D0
E

p

1

p21t0

5
2D0t0

u0
2

u0

D0

G~12d/2!

~8p!d/2
~2t0!d/221. ~3.70!

Using the relations between the bare and renormalized q
tities given in Eqs.~3.7!–~3.11!, the last expression yields

^cR&5
2Dt

u
Ad

1/2kd/2Zc
1/2ZuZt

21ZD
21S 11

u2

4eD2

te/2

12e/2D .

~3.71!

We see that all the poles ine cancel out as they should. A
the fixed point (u/D)* 52(e/3)1/2, we finally find to leading
order ine,

^cR&52S D

u D *
Ad

1/2kd/2~11e/6!tS 12
e

6
ln t D . ~3.72!

Upon exponentiating the logarithm, assuming that this can
done unambiguously, we see that

^cR&5nA;t12e/6, ~3.73!

which implies b15b512e/61O(e2), as already cited in
Eq. ~3.22!, where the scaling relationb5n'(d1z22
1h')/2 was employed.

E. Coupled DP field theory: Active phase

We now proceed to discuss the active phase calcula
for two coupled fields, as represented by the actionSMC
5Seff1DS given in Eqs.~3.2! and ~3.27!. We will again
restrict our discussion to the case wherer A5r B5r 0. Based
on the mean-field analysis of Sec. II, we anticipate that
expectation values of the fields are different from zero wh
r 0,0. Hence we define the shifted fields

FIG. 7. One-loop diagram for̂cc0& in the pure DP active phas
calculation.
n

n-

e

n

e
n

c05vA01cc0 , ~3.74!

c̄05c̄c0 , ~3.75!

w05vB01wc0 , ~3.76!

w̄05w̄c0 . ~3.77!

The new action expressed in terms of the shifted fields w
now involve terms linear inc̄c0 andw̄c0. Equating the coef-
ficients of these terms to zero fixes the constantsvA0 andvB0
to be the classical~mean-field! values. These are determine
by the equations

D0r 0vA01
1

2
u0vA0

2 50,

D0r 0vB01
1

2
u0vB0

2 2m0vA01
1

2
s̃0vA0

2 1 s̃08vA0vB050.

~3.78!

The solutions of these equations are

vA05
2D0ur 0u

u0
, ~3.79!

vB05A4m0D0ur 0u

u0
2

1O~ ur 0u!. ~3.80!

The fields now have new masses given by

D0r A05D0r 01u0vA05D0ur 0u, ~3.81!

D0r B05D0r 01u0vB01 s̃08vA0 , ~3.82!

.A4m0D0ur 0u1O~ ur 0u!. ~3.83!

There are also various new two-point vertices as depicte
Fig. 8, whose corresponding terms in the action are given

E ddxE dt@2 1
2 u0vA0c̄c0

2 2 1
2 ~u0vB01s08vA0!w̄c0

2

2~m02 s̃0vA02 s̃08vB0!w̄c0cc02s0vA0w̄c0c̄c0#. ~3.84!

We can now proceed with the calculation of the expectat
value of the second fieldw0, by using Eq.~3.76! and com-
puting^wc0& to one-loop order. The full calculation is unne
essarily complicated, and universality dictates that we

FIG. 8. New two-point vertices in the active phase coupled
calculation.
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calculate the critical behavior forany point on the stable
fixed line. However, we note that the unstable and sta
fixed lines do not necessarily have to give the same crit
behavior, and indeed in our case we will find that they
not.

For the stable fixed line, we have actually performed
calculation in two different ways. Both methods yield ide
tical results, and this provides us with an important ex
check on our methods. In the first approach we have cho
a subspace of initial parameters

s05 s̃08 , s085 s̃0 , ~3.85!

with the stable fixed point (u/D)* 52Ae/3,g* 5g̃8*
522g8* 522g̃* 5Ae/3. In the second approach we ha
chosen

s085 s̃05 s̃0850, ~3.86!

and with the stable fixed point (u/D)* 52Ae/3,
g* 5(s/D)* 52Ae/3,g8* 5g̃* 5g̃8* 50.

Note that both the parameter subspaces given by E
~3.85! and ~3.86! are closed under renormalization flows,
is evident from a close inspection of the RGb functions
given by Eqs.~3.49!, ~3.50!, ~3.51!, and ~3.52!. The first
choice is the more natural one for investigating the mu
critical point, since when Eq.~3.85! is satisfied the origina
actionSMC5Seff1DS is invariant under a generalization o
the usual DP ‘‘rapidity reversal,’’ namely

c0~x,t !↔2w̄0~x,2t !, ~3.87!

c̄0~x,t !↔2w0~x,2t !, ~3.88!

and under renormalization this symmetry is preserved. H
ever, the calculation using the condition~3.86! is somewhat
simpler. In both approaches the unstable~nontrivial! fixed
point is given by (u/D)* 52Ae/3 andg* 5g8* 5g̃* 5g̃8*
50.

The diagrams contributing to the expectation value
^wc0& to one-loop order are depicted in Fig. 9. We will ou
line first the calculation using the second approach descr
above. In that case diagrams~e! through~h! vanish and one
has to consider only the first four diagrams. We thus find
one-loop order, after implementing Eq.~3.86!,

^w0&5vB02
u0

2vB0

2D0r B0
I 1~r B0!2

u0
2vA0m0

2D0
2r A0r B0

I 1~r A0!

2
u0

2vA0m0
2

2D0r B0
I 2~r A0,r B0!2

u0s0vA0m0

D0r B0
I 3~r B0 ;r A0 ,r B0!

1••• . ~3.89!

With the use of dimensional regularization, the various in
grals appearing in Eq.~3.89! are given by the following ex-
pressions:

I 1~a!5
1

2D0
E

p

1

p21a
52

Ad

D0e~22e!
a12e/2, ~3.90!
le
al
o

e

a
en

s.

-

-

f

ed

o

-

I 2~a,b!5
1

4D0
3 Ep

1

~p21a!~p21b!S p21
a1b

2 D
52

Ad

D0
3e~22e!

1

~a2b!2 Fa12e/21b12e/2

22S a1b

2 D 12e/2G , ~3.91!

I 3~b;a,b!5
1

4D0
2 Ep

1

~p21b!S p21
a1b

2 D
5

Ad

2D0
2e~22e!

Fa1b

a2b S a1b

2 D 2e/2

1
2b

b2a
b2e/2G .

~3.92!

We are interested in obtaining thee expansions of the abov
expressions in the regime whereb@a ~since r B0@r A0 as
r 0→0). In that case we find

I 1~a!'2
Adk2e

2D0e S 11
e

2DaS 12
e

2
ln

a

k2D 1••• ,

I 2~a,b!'
Adk2e

4D0
3

ln 2

b
1••• ,

I 3~b;a,b!'
Adk2e

4D0
2e

S 11
e

2
2

e

2
ln 2D S 12

e

2
ln

b

k2D 1••• .

~3.93!

FIG. 9. One-loop diagrams for the computation of^wc0& in the
coupled DP active phase calculation.
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Let us postpone for the time being a full discussion of
term containingI 2, i.e., the contribution from diagram~c! in
Fig. 9. Note that this term is ultraviolet finite, i.e., it does n
involve a pole ine. However, after using expression~3.93! it
appears to contribute a~negative! constant to the expectatio
value ofw. This seems problematic and a full discussion
this point will be given in the next section.

We now define again

t052~r 02r 0c!, ~3.94!

where to first order in standard perturbation theory we h

r 0c52
u0

2

4D0
2 Ep

1

p2
. ~3.95!

This integral vanishes in dimensional regularization, a
hence in the following calculation we will ignorer 0c , as was
done in the pure DP active phase computation. When u
the relations between the bare and renormalized quantitie
Eqs.~3.7! and ~3.37!, we find to leading order in an expan
sion in t,

^wR&'
2AmDt

u
Ad

1/2kd/2Zw
1/2ZuZm

21/2Zt
21/2ZD

21/2

3F11
u2

4D2e
~11e/2!S 12

e

4
ln

4mt

D D
1

u2

8D2e
~11e/2!S 12

e

2
ln t D2

us

8D2e

3~11e/22e ln 2/2!S 12
e

4
ln

4mt

D D1•••G .

~3.96!

A check reveals that all the poles ine cancel, as they should
At the fixed point given by (u/D)* 5(s/D)* 52Ae/3, we
find

^wR&'2S D

u D * S 11
e

6DAmt

D S 12
e

12
ln~mt/D !

2
e

12
ln t1

e

24
ln~mt/D !1••• D . ~3.97!

Assuming that only one such scaling term becomes ge
ated, we may now exponentiate the logarithms, and see

^wR&;t1/22e/8~m/D !1/22e/245t12e/6~t21m/D !1/22e/24,
~3.98!

from which we infer

b25
1

2
2

e

8
1O~e2!, ~3.99!

f511O~e2!, ~3.100!
e

t

f

e

d

g
in

r-
at

wheref is the crossover exponent, a result consistent w
that derived previously in the inactive phase. We also
that in the definition

^wR&5tb1ŵ~t2fm/D !, ~3.101!

the scaling function behaves for large argument as

ŵ~x!;x1/22e/24, ~3.102!

a result that differs from the mean-field behavior atO(e). At
the upper critical dimensiondc54, a comparison with Eq
~3.26! for the first hierarchy level suggests the logarithm
correction

^wR&;t1/2~2 ln t!1/4. ~3.103!

Let us also discuss briefly the calculation using the
proach given by Eq.~3.85! above. In that case we have fou
additional diagrams~e!–~h! to consider. However, we will
see that diagrams~f!–~h! contribute to higher-order terms i
an expansion int, beyond the leading behavior describe
above. Diagram~e! gives an equal contribution to diagram
~d!, but since the value ofs at the corresponding fixed poin
is half of what it was in the previous calculation, the fin
result is exactly the same. To verify these claims we obse
that diagrams~e!–~h! contribute the following additiona
terms to the right-hand side of Eq.~3.89!:

2
u0s0vA0m0

2D0r B0
I 3~r A0 ;r B0 ,r A0!2

u0s0
8vA0

2D0r B0
I 1~r B0!

2
s0

2vA0

D0r B0
I 4~r A0 ,r B0!2

u0s0
8vA0

2D0r B0
I 1~r A0!. ~3.104!

The only new integralI 4 is given by

I 4~a,b!5I 1@~a1b!/2#. ~3.105!

It is now easy to verify that the last three terms give a co
tribution of O(t0) and higher, which can be neglected
comparison with theO(At0) terms that we have kept. TheI 3
contribution in the first term is given by

I 3~a;b,a!5
Ad

2D0
2e~22e!

Fb1a

b2a S a1b

2 D 2e/2

1
2a

a2b
a2e/2G

'
Ad

4D0
2e

S 11
e

2
1

e

2
ln 2D S 12

e

2
ln bD1••• ,

~3.106!

and thus diagram~e! yields essentially the same contributio
as diagram~d!. Since the value of (s/D)* is now one-half of
its value in the previous approach, our final result follows

Finally, let us discuss the behavior at the unstable, n
trivial fixed point given by (u/D)* 52Ae/3 and g* 5g8*
5g̃* 5g̃8* 50. Returning to Eq.~3.96!, with the last term
set equal to zero, we have
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^wR&}Amt

D S 12
e

12
ln~mt/D !2

e

12
ln t1••• D ,

~3.107!

to leading order. Exponentiating the logarithms~again with
the assumption mentioned above! we find

^wR&;t1/22e/6~m/D !1/22e/12 ~3.108!

5t12e/6~t212e/6m/D !1/22e/12,
~3.109!

and thus in this caseb251/22e/61O(e2),f511e/6
1O(e2), and the scaling functionŵ(x);x1/22e/121O(e2) for
large values of the argument.

F. Technical difficulties

We now return to diagram~c! of Fig. 9. Substituting the
expression forI 2(a,b) from Eq. ~3.93! into the correspond-
ing expression in Eq.~3.89!, we find that the contribution o
diagram~c! to the expectation value of^w0& is

2
u0

2Adk2evA0

8D0
4r B0

2
m0

2 ln 2→2kd/2Ad
1/2S u

D D * ln 2

16

m

D
,

~3.110!

to leading order ine and in an expansion in powers ofAt.
This is in contrast to our expectation~backed up by our
simulation results in Sec. IV! that ^w& should vanish at the
transition ast→0. Notice that this diagram is ultraviolet
finite and hence there are no poles ine. On the other hand
the loop integralI 2(a,b) is infrared-divergentfor any d<6,
which leads to the behaviorI 2(a,b)}1/b for d54 whena
→0. One can argue that ford.4 the prefactor of this dia-
gram will vanish due to the fact thatu flows to the Gaussian
fixed pointu* 50. But ford,4 we seem to have a problem
the origin of which is obviously the appearance of t
stronglyrelevantparameterm as an effective coupling~two-
point vertex! in the perturbation expansion.

This difficulty is somewhat reminiscent of the random
field problem, where infrared-divergent diagrams in pert
bation theory lead to a shift in the upper critical dimension
a w4 theory from 4 to 6@24#. This is due to the extra propa
gators in a given loop as compared to the pure case.
might perhaps argue that because of the unidirectionalit
the interaction between the two fieldsc and w, the c field
acts as a spatially and temporally correlated random fi
from the point of view of thew field, since there is no back
wards feedback, meaning that thew field has no influence on
the c field. However, in contrast to the random field cas
where the random field is taken to be of constant varianc
one approaches the transition temperature, the expect
value of thec field vanishes as one approaches the mu
critical point, and this seems to soften the effect of the inf
red problem. Another marked difference is thatc is not a
quenched random variable in the traditional sense, since
displaying strong temporal fluctuations in the multicritic
regime. Since the above infrared-divergent integral beco
tamed atd56, one might think that, similar to the random
field problem, one might control its divergence by a dime
-

ne
of

ld

,
as
ion
i-
-

is

es

-

sionality shift. However, we have not been able to constr
a sensible field theory for this problem by choosingd56 as
the upper critical dimension. Actually other infrared
divergent diagrams can be found at higher loop orde
which are even more divergent than the diagram just m
tioned, as in, e.g., Fig. 10~a!. IR-divergent diagrams also
appear in the expansion of other vertex functions, like
ww̄2 vertex to one-loop order, where one can easily constr
diagrams with one or two insertions of thec field into the
w-triangular diagram, see Figs. 10~b! and 10~c!. Another
place where a similar diagram appears is in the ‘‘mixe
vertex functionGw̄c , see the last diagram of Fig. 4 and E
~3.36!. If we evaluate this vertex function at a general ‘‘tem
perature’’t, rather than att51 as in Eq.~3.36!, we find that
its contribution ind54 diverges like 1/t ast→0. From the
active phase side, the same diagram diverges like 1/Amt.
This prevents one from defining the renormalizedm param-
eter at criticality as the value of this function fort50, at
least not atq5v50. One can attempt to absorb this dive
gence by a finite~nonultraviolet divergent! renormalization
addition toZm , which will then become temperature depe
dent. Thus one would defineZm such that the renormalize
Gw̄c evaluated atq5v50 would be finite ast→0. If this is
done in the active phase, we have verified that it cancels
contribution of the problematic contribution to^w0& against
the corresponding term inZm . However, this procedure ap
pears somewhat artificial and not entirely satisfactory sinc
requires a temperature-dependent renormalization cons
Also, to establish such a renormalization scheme, one wo
have to check that this procedure works properly to hig
loop orders as well, where even more IR-divergent contri
tions are present.

In the absence of a truly satisfactory resolution of t
infrared difficulty, one might argue that its effect is to rend
thee expansion derived in the previous sections invalid. Y
this conclusion is too far reaching, since even if a we
defined field theory that describes the asymptotic critical
havior of all hierarchy levels is problematic~and may not
even exist!, our results are still likely to be valid for a rang
of the parametert close to the transition point, as will be
come clear from the following reasoning.

FIG. 10. ~a! An IR-divergent diagram at higher loop order, co
tributing to the expectation value ofw. ~b! IR-divergent diagram
contributing to the three-point vertex function with one insertion

c̄2. ~c! IR-divergent diagram contributing to the three-point vert

function with two insertions ofc̄2.
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We notice that the problematic IR-divergent diagrams
proportional to higher powers of the interspecies couplingm.
For example, the IR-problematic diagram mentioned at
beginning of this section gives an overall contribution p
portional tom, whereas the other diagrams contributing
^w& to one-loop order~which were mentioned at the end o
the preceding section! are proportional toAm or Am ln m.
For small values ofm these problematic diagrams are the
fore suppressed. Nowm is a relevant coupling in the RG
sense and thus the effective~running! coupling increases a
one goes deeper into the critical region. But by starting w
an initially small value ofm, one can increase the size of th
region in whichm remains small. In this intermediate regio
the IR-divergent diagrams can still be neglected and the s
ing results obtained in the previous sections are valid. Th
our theory predicts that for smallm, ast is decreased, one
can observe a scaling regime where the critical behavio
characterized by the universal exponents calculated in
previous sections. In particular, the exponentb2 should be
observable. Ultimately, ast becomes very small the fiel
theory may break down. However, we cannot exclude
emergence of another nontrivial asymptotic scaling reg
deep in the critical region. The ensuing scaling behav
might possibly be extracted by isolating the structure of
leading IR divergences to all orders and then by a resum
tion of the ill-defined perturbative expansion inm. However,
although this possibility exists, it cannot be substantiated
this point by more rigorous arguments. What is more like
to happen is that anonuniversalcrossover behavior ensue
~nonuniversal as a consequence of the breakdown of the
expansion and hence the RG construction!, which eventually
terminates in asymptotically decoupled DP behavior.
other words, theB species are no longer slaved to theA
particles, but rather behave independently such that t
density vanishes with a powerb1. This is supported by the
simulation results, as will be discussed in a later sect
Probably, at sufficiently large times, the discrete and fin
number of A particles already vanishes in the interior
comparatively large domains. Consequently theB particles,
which were actually generated previously through the re
tion A→B, interact and annihilate as if they were indepe
dent and decoupled from theA species. Further discussion
of this issue in light of the simulation results will follow a
the end of the paper.

G. Diagonalized theory

We now return to another of the approaches to
coupled DP problem mentioned in Sec. III A, namely that
diagonalizing the action~3.2! to remove the quadratic cros
term linking thec0 andw0 fields. If we apply the transfor-
mations

F05w01
m0

D0~r A2r B!
c0 ,

C̄05c̄02
m0

D0~r A2r B!
w̄0, ~3.111!

then the action~3.2! is transformed to
e

e
-

-

h

l-
s,

is
he

e
e
r
e
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at

n

ir

.
e

c-
-

e
f

Sdiag5E ddxE dtH C̄0@] t1D0~r A2¹2!#c0

2
u0

2
@C̄0

2c02C̄0c0
2#1w̄0@] t1D0~r B2¹2!#F0

2
u0

2
@w̄0

2F02w̄0F0
2#2S0w̄0C̄0c01S̃08w̄0F0c0

1
S̃0

2
w̄0c0

22
S08

2
w̄0

2c0J . ~3.112!

Here we have defined

S05
u0m0

D0~r A2r B!
,

S̃0852
u0m0

D0~r A2r B!
,

~3.113!
S̃0

2
5

m0

2D0~r A2r B!S u01
u0m0

D0~r A2r B! D ,

S08

2
5

2m0

2D0~r A2r B! S u02
u0m0

D0~r A2r B! D .

Note that this new action~3.112! has precisely the form o
our original full actionSMC , except that the quadratic cros
term which linked thec0 andw0 fields has been eliminated
This renders the diagonalized model a special case of
very general quadratically coupled DP processes studied
Janssen@15#. In addition, we remark that this diagonalizin
transformation breaks down whenr A5r B , consistent with
our earlier identification of novel multicritical behavior fo
r A5r B5r→0.

Since the action~3.112! is very similar toSMC , we can
quickly determine its ensuing scaling behavior. The mix
three-point vertices have exactly the same fixed-line str
ture as derived in Sec. III C. Thus the diagrams which wo
have generated a quadratic cross term under renormaliza
~i.e., thed52 UV-divergent diagrams in Fig. 4! cancel out at
both of the fixed lines~at least to one-loop order!. Hence, to
this order, the DP parts of the action for thec andF fields
are entirely unaffected by the presence of the mixed thr
point vertices, generated by the transformation~3.111!. In
that case we expect pure DP behavior on the transition l
away from the multicritical point, as we had earlier antic
pated, and as shown on very general grounds in Ref.@15#.

H. Crossover theory

Outside the multicritical regime, the mean-field appro
mation suggested that we should expect ordinary DP crit
behavior for theB species, if eithertA.0 and tB→0 or
tB.0 andtA→0, see Fig. 1. If one starts near the multicri
cal point where bothtA→0 and tB→0, then at first the
multicritical density exponentb2 should be observed, even
tually crossing over to the ordinary DP exponentb1, and
similarly for the exponentsa i , etc. In the first crossove
regiontA.0 andtB→0, indicated by the dashed arrowB in
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Fig. 1, this scenario is rather obvious on the mean-field le
valid for d.dc : Here, the densitynA50, and therefore the
coupling between the different hierarchy levels vanish
Our study of the diagonalized theory in the preceding S
III G established the DP character of the ensuing act
absorbing transition attB50 even belowdc , when fluctua-
tions become dominant.

The more interesting case is the situation fortB.0 and
tA→0, where there exists a DP phase transition for theA
particles. FormAB.0, we argued above that theB species
becomes ‘‘slaved’’ to the criticalA species, and is driven to
a nonequilibrium phase transition itself as theA control pa-
rametertA→0. In order to describe the ensuing crossov
scenario, we apply the generalized minimal subtract
scheme of Ref.@25#, where we retain the parametertB in the
RG flow equations, and usetA51 as the normalization
point. TheZ factors then become functions of the nonline
couplingsand tB . In order to simplify the calculation, we
once again use the reduced parameter space whereg85g̃

5g̃850. However, now we must distinguish between t
nonlinear DP couplingv for theA species and the one for th
B particles, which we denote withv8. The remaining impor-
tant Wilson RG functions then become

ztA
52213v, ~3.114!

ztB
5221

3v8

~11tB!11e/2
, ~3.115!

zm2zD5222v1
Av8g

~11tB!11e/2
, ~3.116!

and the RGb functions for the couplingsv, v8, andg read

bv5v~2e112v !, ~3.117!

bv85v8S 2e1
12v8

~11tB!11e/2D , ~3.118!

bg5gS 2
e

2
12v1

Av8g

~11tB!11e/2D . ~3.119!

Of course, theA species DP fixed point remainsv* 5e/12
with ztA

* 5221e/4. However, theeffective B coupling

v8(l )/@11tB(l )#11e/2→0 asymptotically asl →0 @since
v8(l );l 2e# and hencetB(l );l 22 according to Eqs.
~3.118! and ~3.115!. Thus bg→2(e/3)g and g(l )→0 as
well. Consequently,zm* 2zD* 5222e/12, and we recover

f5~zm* 2zD* !/ztA
* 511e/61O~e2!, ~3.120!

i.e., the result given in Eq.~3.63! at the unstable fixed line
Notice that here the critical exponents for theB species are
given by n'521/ztA

* , etc., and thus take on the usual D

values~3.19! to ~3.22!.
In the active phase, we may confirm this by direct calc

lation, as in Secs. III D and III E. From the diagrams in F
9, for finite tB , and in essentially the reduced parame
l,

s.
c.
/

r
n

r

-
.
r

space, only graph~b! survives. After inserting thepc shift,
and multiplying by the appropriate renormalization consta
~in the generalized minimal subtraction scheme!, the equa-
tion of state in terms of the renormalized quantities assum
the form

^wR&tButAuF12
4v
e S 11

e

2
2

e

2
lnutAu D G;2Av

m

D
^cR&2.

~3.121!

At the DP fixed pointv* 5e/12, we exponentiate the loga
rithm on the left-hand side toutAu12e/65tA

b1 , and usê cR&
;tA

b1 , which leads us to

^wR&;2Av*
m

D

tA
b1

tB
, ~3.122!

which obviously generalizes the mean-field result~2.26!.

I. Higher hierarchy levels

We end this section on applications of the renormalizat
group to coupled DP with some remarks on the behavio
higher hierarchy levelsi .2. As pointed out already in Sec
II, while generically the transitions from the active to th
absorbing inactive phase of particle speciesi are of the DP
universality class, with the critical density exponentb1, one
finds the two-level hierarchy exponentb2 whenever the first
two critical points coincide,r A5r B . However, further spe-
cial multicritical behavior appears at higher levels if add
tional r k become equal. In mean-field theory, one hasb i
51/2i 21 for r 15•••5r i . In the two-level hierarchy (i
52) multicritical regime, one finds a strongdownward
renormalization ofb1 and b2 due to fluctuations, see Eqs
~3.22! and ~3.99!.

In order to see what happens at higher hierarchy levels
us briefly consider the three-species coupled DP proces
the vicinity of the multicritical regime, and for small trans
mutation rates. Notice that in this situation fluctuations w
not only generate the vertices corresponding to Eq.~3.27! on
each adjacent level, but also the indirect transmutationA
→C, as well as all possible three-point verticesunidirection-
ally coupling the levels~and in principle additional highe
order nonlinearities, which, however, turn out to be irre
evant!. In order to simplify the analysis, we merely use t
reduced parameter space analogous to keeping only the
vertex s0 in the two-level process. This leaves us with t
following effective action~with the fieldsf̄0 andf0 describ-
ing the particle speciesC):

Seff5E ddxE dtH c̄0@] t1D0~r A2¹2!#c0

2
u0

2
~ c̄0

2c02c̄0c0
2!1w̄0@] t1D0~r B2¹2!#w0

2
u0

2
~ w̄0

2w02w̄0w0
2!2m0w̄0c02s0w̄0c̄0c0

1f̄0@] t1D0~r C2¹2!#f02
u0

2
~f̄0

2f02f̄0f0
2!
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2m08f̄0w02t0f̄0w̄0w02m̄0f̄0c02 t̄ 0f̄0c̄0c0

2r0f̄0w̄0c0J . ~3.123!

Clearly, if we just consider theB/C reactions, then a fully
analogous calculation as in Sec. III C yields

zm82zD5222v1Avh, ~3.124!

where h5t/D. Hence withv* 5e/12, the crossover expo
nent at the associated two-level multicritical point is

f85~zm8
* 2zD* !/zt* 511O~e2!, ~3.125!

computed at the stable fixed pointh* 52Ae/3 ~which is the
remnant of the stable fixed line in the reduced param
space!. We may wonder now if the unidirectional, sequent
coupling of three hierarchy levels leads to a further no
crossover exponent associated with the transmutationA
→C. Thus, we compute the renormalization of the ver
function Gf̄c , which leads to

zm̄2zD5222v1Av~ f 1 f̄ !, ~3.126!

where f 5 t̄ /D and f̄ 5rm8/Dm̄. We now merely need the
renormalizations of bothf and f̄ . In just the same manner a
in the two-level calculation, one finds from the renormaliz
tion of Gf̄c̄c ,

b f5 f ~2e/212v1Av f !5 f ~2e/31Ae/12f !,
~3.127!

which obviously has the IR-stable fixed pointf * 52Ae/3.
The only really novel renormalization concerns the ver
function Gf̄w̄c , yielding

zr2zD52e/222v1Av~g1h1 f !. ~3.128!

After usingzm82zm̄5Av(h2 f 2 f̄ ), this leads to

b f̄5 f̄ @2e/222v1Av~g12h2 f̄ !#5 f̄ ~e/32Ae/12f̄ !.
~3.129!

Comparing with Eq.~3.127!, we see that the nontrivial fixed
point f̄ * 52Ae/3 is unstable, whereasf̄ * 50 is stable ford
,4. Consequently, the three-species vertexGf̄w̄c vanishes
asymptotically, i.e., becomes irrelevant, which implies

f̄5~zm̄
* 2zD* !/zt* 511O~e2!, ~3.130!

identical with the one-loop values of the crossover expone
f and f8. Coupling to an additional hierarchy level ther
fore doesnot introduce a novel crossover exponent in t
multicritical regime, at least toO(e). We suspect that this is
actually true to higher orders ine542d and for higher lev-
els i .3 as well.

On the other hand, below the critical dimensiondc54 the
density exponentsb i are affected by the fluctuation corre
tions to the scaling functions, and are not simply determin
by a scaling relation like Eq.~2.37! @22#. In fact, were such a
renormalization contribution from the scaling function a
er
l
l

x

-

x

ts

d

sent, we would arrive atb i51/2i 212e/6 to one-loop order,
with the O(e) correction independentof the level indexi.
This would predict that near four dimensions, i.e., for a
0,e!1, b i should become negative for sufficiently largei.
The correct result~3.99! for the second hierarchy level, how
ever, shows that theO(e) correction is actually smaller tha
for the first level. Presumably, on each successive level
O(e) corrections are further reduced, such that all the d
sity exponents remain positive. A detailed computation
b3, which requires an explicit study of the active phase,
ready becomes a rather tedious affair, and we leave our
cussion of higher hierarchy levels with this speculation.

IV. NUMERICAL RESULTS

In order to support our field-theoretical results, we stud
unidirectionally coupled hierarchy of DP models usin
Monte-Carlo simulations. There is a large variety of DP l
tice models that can be used for this purpose. One of
simplest and most efficient realizations isdirected bond per-
colation on a tilted square lattice@26#. In this model, neigh-
boring sites are connected by directed bonds which are o
with probability p and closed otherwise. Activity percolate
through open bonds along a given direction which is usua
interpreted as the direction of time. Labeling different row
of sites by a discrete time variablet, directed bond percola
tion may be equivalently defined as a stochastic cellular
tomaton with parallel update rules mapping the system
configuration at timet probabilistically onto a set of new
configurations at timet11. In one spatial dimension, di
rected bond percolation is just a special case of the Doma
Kinzel cellular automaton@27# which is known to be one of
the most efficient realizations of DP on a computer. Anoth
advantage of using directed bond percolation is the availa
ity of very precise estimates for the critical percolatio
thresholdpc(d) in d<2 spatial dimensions. Currently th
best estimates arepc(1)50.644 700 15(5)@28# for d51 and
pc(2)50.287 338(6) @29# for d52, respectively. To our
knowledge, the percolation threshold fo
(311)-dimensional directed bond percolation has not be
estimated before. Using standard methods we find the v
pc(3)50.132 35(20).

Coupled DP may be realized on a computer by simu
neously evolving several directed bond percolation mod
which are coupled without feedback according to the pr
ciples outlined in the Introduction~see Fig. 11!. For simplic-
ity, we work in the limit of infinite coupling strengthm5`,
i.e., active sites in one of the subsystems instantaneously
the corresponding sites of the next subsystem into the ac
state. Alternatively, we could also apply a finite couplin
strength~probabilistic transfer of activity to the next sub
system!, or explicit particle transmutation A→B,B
→C, . . . . Although these variants are expected to have
same critical properties, their initial crossover times into t
scaling regime are typically longer. Therefore we restrict
numerical analysis to the case of infinite coupling streng

In principle, it would be possible to simulate arbitrari
many hierarchy levels. However, in order to reach the sc
ing regime, the particle densities have to be low enough
turns out that already at the fourth level the particle densit
rather high, which makes it extremely difficult to determin
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critical exponents. For this reason our numerical simulati
are restricted to three hierarchy levels.

A. Numerical estimation of the critical exponents

In order to estimate the critical exponents of coupled D
we employ two standard numerical methods for systems w
phase transitions into absorbing states. On the one hand
use steady-state simulations in the active phase in orde
directly determine the exponentsbk . On the other hand, dy
namical simulations@30# at the multicritical point render a
set of dynamic exponents which in turn determine the ex
nentsn',k andn i ,k .

a. Steady-state simulations in the active phase.On the
multicritical line the stationary particle densitiesnk are ex-
pected to scale asnk;(p2pc)

bk. By measuringnk in a suf-
ficiently large system, it is therefore possible to directly e
timate the exponentsbk . The accuracy of the result
depends on the accessible range ofDp5p2pc in the simu-
lation. In d51 spatial dimension the minimal value ofp
2pc is predominantly limited by the equilibration timeTequ,
which has to be larger than the temporal correlation len
j i ,k;(p2pc)

2n i ,k, whereas ind>2 dimensions the main
limitation is the system sizeNmax, which has to be large
than j',k

d ;(p2pc)
2dn',k ~see Table I!. The measurement

for d51 are shown in Fig. 12~a!. From the slopes of the
lines averaged over one decade we estimate the expon
b i , whose values are listed in Table I.

b. Dynamical simulations at the multicritical point.The
most precise estimates for the critical exponents of syst
with phase transitions into absorbing states are usually

FIG. 11. Schematical illustration of a coupled hierarchy of th
directed bond percolation processes in 111 dimensions. Activity
percolates along the direction of time through bonds~simple ar-
rows! which are open with probabilityp. The three subsystems ar
coupled by instantaneous transfer of activity~double arrows! to the
corresponding site of the next subsystem.

TABLE I. Steady-state simulation results.

d51 d52 d53 d542e

Dpmin 0.0004 0.0008 0.0016
Nmax 4000 1002 353

Tequ 105 104 103

b1 0.280~5! 0.57~2! 0.80~4! 12e/61O(e2)
b2 0.132~15! 0.32~3! 0.40~3! 1/22e/81O(e2)
b3 0.045~10! 0.15~3! 0.17~2! 1/42O(e)
bDP 0.2765 0.584 0.81
s

,
th
we
to

-

-

h

nts

s
b-

tained by dynamical simulations@30#. Starting from an initial
state with a single particle~active seed!, the system evolves
at the critical point and generates a spatio-temporal cluste
active sites whose size and lifetime are finite. Survival pro
ability, mass, and mean-square spreading of the cluster
algebraically with certain dynamical exponents, which
turn are related to the exponentsb, n' , andn i . In order to
apply this technique to coupled DP, we prepare an ini
state with a singleA particle at the origin and perform th
simulation at the multicritical point. The properties of th
resulting cluster are analyzed separately for each par
species, i.e., we measure the survival probabilityPk(t), the
number ofk particles~cluster mass! Nk(t), and the mean-
square spreading from the originRk

2(t) averaged over all
runs that survived at levelk up to timet. At the multicritical
point, these quantities are expected to scale as

Pk~ t !;tdk, Nk~ t !;thk, Rk
2~ t !;t2/zk, ~4.1!

where dk5bk /n i ,k and zk5n i ,k /n',k . Here, hk is the so-
called critical initial slip exponent@31,20# which will be dis-
cussed below~not to be confused with the static correlatio
function Fisher exponenth).

The temporal variation of the quantities~4.1! measured in
a three-level coupled directed bond percolation model in
11 dimensions is shown in Figs. 12~b!–12~d!. Similar simu-
lations were performed in two and three spatial dimensio
From the slopes of the lines averaged over two decades
estimate the critical exponentsdk , hk , and zk , which are
summarized in Table II. Notice thatz1 , z2, andz3 assume
the same values within the numerical error. Inserting the p
vious estimates forbk , we can compute the scaling expo
nents n i ,k5bk /dk and n',k5n i ,k /zk separately for each
level k in the hierarchy~see Table III!. Within numerical
error they coincide with the DP exponentsn' , n i , andz, as
predicted by the field-theoretical RG calculation.

c. General problems.The extensive simulations reveal a
unexpected deviation from ideal scaling at higher levels.

e

FIG. 12. Monte Carlo simulations of coupled DP in 111 di-
mensions.~a! Steady-state simulations in the active phase.~b!–~d!
Dynamical simulations at criticality. Time is measured in Mon
Carlo steps.
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can be seen in Fig. 12, the lines fork.1 are in fact not
perfectly straight but slightly bent. In order to illustrate the
deviations, we determined the local slope of the survi
probabilities,

dk~ t !5
log10 Pk~2t !2 log10 Pk~ t !

log102
~4.2!

and similarlyhk(t) in a (111)-dimensional system. Afte
sufficiently long times, these quantities should become c
stant and equal to the exponentsdk andhk , respectively. As
expected, the lowest level reaches the scaling regime af
short time~see Fig. 13!. At higher levels, however, there is
considerable drift of the local slope that extends over
entire temporal evolution. Similar drifts can be observed
all other quantities which involve the density expone
b2 ,b3 , . . . . The deviations indicate that the scaling regim
especially at the third level, has not yet been reached.
estimating the critical exponents at higher levels, we the
fore encounter considerable systematical errors which m
even exceed the statistical error margins. A careful numer
analysis shows that the drift in the local slopes is neit
related to finite-size effects nor to deviations from criticali
At present the origin of these deviations from ideal scaling
not yet entirely clear. It might perhaps be a signature of
IR-divergent diagram~c! of Fig. 9 ~see Sec. III F!. As men-
tioned above, these graphs are connected with the app
ance of additional powers of therelevantcouplingm, and we
suspect that this drift in the scaling exponents signals
our first-order perturbation theory with respect to the tra

TABLE II. Dynamical simulation results.

d51 d52 d53 d542e

tmax 104 103 300
d1 0.157~4! 0.46~2! 0.73~5! 12e/41O(e2)
d2 0.075~10! 0.26~3! 0.35~5! 1/22e/61O(e2)
d3 0.03~1! 0.13~3! 0.15~3! 1/42O(e)
h1 0.312~6! 0.20~2! 0.10~3! e/121O(e2)
h2 0.39~2! 0.39~3! 0.43~5! 1/21O(e2)
h3 0.47~2! 0.56~4! 0.75~10! 3/42O(e)
2/z1 1.26~1! 1.10~2! 1.03~2!

2/z2 1.25~3! 1.12~3! 1.04~2! 11e/241O(e2)
2/z3 1.23~3! 1.10~3! 1.03~2!

TABLE III. Derived critical exponents.

d51 d52 d53 d542e

n',1 1.12~4! 0.70~4! 0.57~4!

n',2 1.11~15! 0.69~15! 0.59~8! 1/21e/161O(e2)
n',3 0.95~25! 0.65~15! 0.62~9!

n',DP 1.0968 0.734 0.57
n i ,1 1.78~6! 1.24~6! 1.10~8!

n i ,2 1.76~25! 1.23~17! 1.14~15! 11e/121O(e2)
n i ,3 1.50~40! 1.15~30! 1.21~15!

n i ,DP 1.7338 1.295 1.09
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mutation rate becomes ultimately insufficient, and some
propriate resummation of the expansion inm would in fact
be required.

Furthermore, we remark that in a simulation based
course on a finite number of particles, ultimately one wou
expect a crossover to thedecoupledsituation, namely when
theA species, whose density decaysfasterat the multicritical
point, has already died out. It might well be possible that
a fluctuation-dominated regime this effect sets in much e
lier, provided there emerge large regions which have alre
become depleted of theA particles. Thus, one explanation o
the drifts visible in Fig. 13 could be that this crossover r
gion to the asymptotic decoupled regime has already b
reached. The universal exponents predicted by the fi
theory would then apply only to an intermediate scaling
gime. We note that the field theory calculation, being ba
on a continuum description of coarse-grained particle de
ties, cannot easily account for this finiteness of the part
number.

In the case of coupled annihilation processes~see Sec.
VI !, where similar deviations occur, the intermediate scal
regime can be clearly identified in numerical simulations.
particular, it is observed that the size of the scaling regi
grows as the coupling strength decreases. We have also
formed simulations of coupled DP with reduced coupli
strength~probabilistic transfer of activity to the next level!.
Unfortunately, the initial crossover into the intermedia
scaling regime grows rapidly as the coupling strength is
duced, which makes it impossible to identify the boundar
of the intermediate scaling regime.

B. Critical initial slip

When a DP process starts from random initial conditio
at very low density, the particles are initially separated
empty intervals of a certain typical size. During the tempo
evolution these particles generate individual clusters wh
are initially separated. Therefore, the average particle den
first increasesasn(t);th—a phenomenon which is referre
to as thecritical initial slip of nonequilibrium systems@31#.
Later, when the growing clusters begin to interact with ea
other, the DP process crosses over to the usual decayn(t)
;t2b/n i. Dynamical simulations starting from a single pa
ticle represent the extreme case where the critical initial
extends over the entire temporal evolution.

In ordinary DP, the critical initial slip exponenth is re-
lated to the other bulk exponents through the hypersca
relation 2d1h5d/z @30,20#. In the case of coupled DP w

FIG. 13. Local slopes of the lines in Figs. 12~b! and 12~c!. The
slow drift of the slopes at higher levels indicates that the sca
regime is not yet reached in the present simulations.~Time is mea-
sured in Monte Carlo steps.!
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would therefore naively expect that the critical initial sl
exponentshk are related to the other exponents by 2dk
1hk5d/z. However, the numerical estimates in Tables
and III do not satisfy this scaling relation at higher levelsk
.1. Instead they seem to fulfill thegeneralized hyperscaling
relation introduced in Ref.@32# in the context of systems
with many absorbing states,

dDP1dk1hk5d/zk . ~4.3!

Here dDP denotes the exponentb/n i of ordinary directed
percolation. In fact, inserting the estimates ofdk andzk for
d51, Eq. ~4.3! predicts the valuesh150.314(4), h2
50.398(10), andh350.443(20), which are in fair agree
ment with the estimations in Table III.

In fact, the above scaling relation~4.3! may be derived
fairly simply, starting from an appropriate scaling form f
the two-point correlation function. If we initiate the clust
starting from a single localized seed, then the density oB
particles at a later time will have the following form:

n2~x,t !;utu2b1 f̂ 1S m/D

utuf
,

x

utu2n'
,

Dt

utu2n i
D . ~4.4!

Note that, even though this is a scaling form for thedensity,
it has the structure of a two-point correlation functio
Roughly speaking, the prefactors in Eq.~4.4! may be inter-
preted as follows: one factor ofutub1 comes from the prob-
ability that the cluster is still alive at timet, while the second
factor comes from the probability that the point (x,t) is a
member of that cluster. At criticality we find, by integratin
Eq. ~4.4! over space,

th2;t (dn'22b1)/n i f̂ S m/D

~Dt !2f/n i
D , ~4.5!

where we have also used one of the definitions from
~4.1!. Assuming that the scaling functionf̂ in the multicriti-
cal regime behaves in the same way as in Sec. III E, we t
end up with the scaling relation~4.3! for the second hierar
chy level. The extension to higher levels works in an exac
similar manner.

C. Susceptibility to an external field

Coupled DP may be subjected to an external fieldh.0 by
adding a termh*ddx*dtā to the action~3.1!. In the particle
interpretation, the field corresponds to a spontaneous
ation of A particles at rateh during the temporal evolution
This means that all subsystems approach a fluctuating st
state, irrespective of the value ofp. We are particularly in-
terested in the response ofnk to the external field at the
multicritical point. For ordinary DP it is known thatn1
;hg, whereg5b/(dn'1n i2b) is the susceptibility expo-
nent. For coupled DP we can derive a similar relation, st
ing from the scaling form for the~steady-state! density

n2;utub1ĝ1S m/D

utuf
,

utu

h1/DD , ~4.6!
I

.

.

n

y

e-

dy

t-

where the DP exponentD can be shown to equalD5dn'

1n i2b1. In the limit utu→0, we thus have

n2;hb1 /DĝS m/D

hf/D D . ~4.7!

Hence, using the results of Sec. III E and generalizing to
kth level of the hierarchy, we have

nk;hgk, gk5
bk

dn'1n uu2b1
. ~4.8!

In order to verify this scaling relation, we repeat the stea
state simulation at the multicritical point in the presence
spontaneous creation ofA particles. The results in 111 di-
mension are shown in Fig. 14. From the slopes of the li
we estimate the susceptibility exponents

g150.109~2!, g250.045~4!, g350.014~2!.
~4.9!

On the other hand, the above scaling relation yields the
uesg150.107(2), g250.051(6), andg350.018(5), which
are in fair agreement with the simulation results.

D. Crossover phenomena near the multicritical point

Numerical simulations near the critical point reprodu
the crossover scenario predicted by the mean-field appr
mation. As an example, we consider the two crossov
along the dashed arrowsA andA/B in the mean-field phase
diagram of Fig. 1. To this end, we simulate a two-level sy
tem in one spatial dimension. The percolation probabilityp1
of level A is always at the critical point, whereas levelB is
simulated slightly below and above criticality (p25pc
60.05). The numerical results are shown in Fig. 15. As
pected, forp2,pc the density ofB particles first decays like
n2(t);t2b2 /n i and then crosses over to a dynamical st
where theB particles become ‘‘slaved’’ to theA particles,
such thatn2(t);n1(t);t2b1 /n i. On the other hand, forp2
.pc the B subsystem crosses over into a state with a c
stant density where theB particles become independent

FIG. 14. Susceptibility of multicritical coupled DP to an exte
nal field. The figure shows the stationary particle densitiesnk versus
the rateh for spontaneous particle creation.
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the A particles. Thus the crossover effects are in qualitat
agreement with the mean-field and RG predictions of Sec
and III H.

V. APPLICATIONS

The most natural applications of coupled DP are
growth processes in which the layers at different heights r
resent different subsystems in the hierarchy. The dynam
rules for adsorption and desorption in these models hav
be implemented in such a way that neighboring layers
effectively coupled in one direction without feedback. T
phase transition then emerges as a roughening trans
from a smooth phase to a rough phase. The known exam
include so-called polynuclear growth models~PNG! @33#, a
special class of solid-on-solid~SOS! models@34#, and certain
models for fungal growth@35#. Another interesting realiza
tion of coupled DP is the spreading of activity next to t
‘‘light cone’’ in stochastic cellular automaton models wi
parallel update rules.

A. Roughening transitions in SOS models

Coupled DP was first identified in a particular SOS mo
@34# which exhibits a roughening transition even in one s
tial dimension. The active phase of coupled DP correspo
to a smooth phase where the interface is pinned to a spo
neously selected layer. On the other hand, the inactive p
of coupled DP corresponds to a roughening interface wh
propagates at finite velocity.

The unrestricted version of the SOS model is defined o
one-dimensional lattice ofN sites, i 51 . . .N, with associ-
ated height variableshi , which may take values 0,1,. . . ,`.
The dynamical rules are defined through the following alg
rithm: At each update a sitei is chosen at random. Then a
atom is adsorbed,

hi→hi11 with probability q, ~5.1!

FIG. 15. Crossover effects near the multicritical point. The fi
ure shows the particle densitiesnk vs time in a two-level system
starting from a fully occupied lattice, normalized att510. LevelA
(k51) is always critical, while levelB (k52) is either evolving in
the active, critical, or inactive regime. Initially the decay ofB par-
ticles is the same in all cases. Later the system crosses over
different behavior where theB particles become independent
slaved to theA particles, respectively.~Time is measured in Monte
Carlo steps.!
e
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or desorbed from the edge of an island~plateau!,

hi→min~hi ,hi 11! with probability ~12q!/2, ~5.2!

hi→min~hi ,hi 21! with probability ~12q!/2. ~5.3!

When the growth rateq is low, the desorption processes~5.2!
and ~5.3! dominate. If all the heights are initially set to th
same valueh0, this layer will remain the bottom layer of th
interface. Small islands will grow on top of the bottom laye
but will quickly be eliminated by desorption at the islan
edges. Thus, the interface is effectively anchored to its b
tom layer, and the growth velocity, defined as the rate
increase of the minimum height of the interface, is zero
the thermodynamic limit. Asq is increased, the size of th
islands created on top of the lowest layer increases. Ab
qc , the critical value ofq, the islands merge and new laye
are formed at a finite rate, giving rise to a nonzero interfa
velocity in the thermodynamic limit.

The key feature of this model is that atoms may des
only at theedgesof plateaus, i.e., at sites which have at lea
one neighbor at a lower height. In experiments this wo
correspond to a system where the binding energy in co
pleted layers is much larger than at the edges of plate
Furthermore, the dynamical processes at a given layer
independent of the processes at higher layers. In particu
the temporal evolution at the bottom layer is decoupled fr
all other processes at higher layers. In fact, one can show
the dynamics of the bottom layer can be mapped ont
one-dimensional contact process which is known to belo
to the DP universality class@34#. Identifying blank sites at
the bottom layer asA particles, the adsorption process~5.1!
may be interpreted as the annihilation ofA particles, while
the desorption process~5.2! and ~5.3! corresponds toA par-
ticle production. Similarly, the dynamical processes at
following layers may be associated with the particle spec
B,C,D, . . . .

It is important to note that the state of a site in coupled
is characterized by the presence or absence of various
ticle species, while sites of a growth model are associa
with a single quantity, namely the heighthi . To connect the
two descriptions, we have to assume that the coupling c
stant m is infinite such that particles at levelk instanta-
neously create particles at levelk11. In this case the state o
a site in coupled DP is fully characterized by the index of t
lowest active level in the hierarchy, which then correspon
to the height of the interface in the growth model. Therefo
the order parametersnA ,nB ,nC , . . . 5n1 ,n2 ,n3 . . . are de-
fined by

nk5
1

N (
i

(
h5h0

h01k21

dhi ,h , ~5.4!

that is,nk is the density of sites whose heights arelessthan
h01k, whereh0 denotes the height of the bottom layer. B
definition, the densities obey the inequalitynk<nk11.

The above growth model is invariant under global shi
of the heightshi→hi1a. This symmetry is spontaneousl
broken in the~coupled DP! active phase where the syste
selects a particular reference height as the bottom laye
the ~coupled DP! inactive phase, however, the interface b

-

a
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comes rough and propagates at finite velocity, i.e., active
processes subsequently enter the absorbing state. The g
velocity v is inversely proportional to the average surviv
time of the lowest-lying DP process, hencev;(q2qc)

n uu.
Numerical simulations confirm that the critical behavior
the first few layers in the growth model is indeed the same
in coupled DP. In particular, the exponentsbk for the density
of sites at the first few layers are in agreement with
numerical estimates in the present work.

Alternatively, one may study the same model with t
additional restrictionuhi2hi 61u<1. In that case the layer
are no longer coupled without feedback. For example,
site with heighthi51 has neighbors at heightshi 2150 and
hi 1152, the atom at sitei cannot desorb from the surfac
Using the language of coupled DP, this means that the p
ence ofC particles prevents theA particles from producing
offspring. Surprisingly, the numerical estimates of the ex
nentsbk indicate that the critical behavior of the system
still that of coupled DP. Thus it seems that certain reali
tions of ‘‘inhibiting’’ feedback from higher levels to lowe
ones do not destroy the universal properties of coupled
Rather, the essential precondition for coupled DP seem
be the existence of a hierarchy of absorbing subspaces,
inactive levels must not be activated by higher levels.

B. Polynuclear growth „PNG… models

In PNG models@33# a similar scenario arises, but in th
case the coupled DP behavior occurs at the highest leve
the interface. As in the previous case, the PNG models m
be defined on a square lattice with associated height v
ableshi . The key feature of these models is the use ofpar-
allel updateswhich gives rise to a maximum velocity of th
interface. One of the most popular PNG models is defin
through the following dynamical rules. In the first half tim
step atoms ‘‘nucleate’’ stochastically at the surface by

hi S t1
1

2D5H hi~ t !11 with probability p

hi~ t ! with probability 12p.
~5.5!

In the second half time step the islands grow determini
cally until they coalesce,

hi~ t11!5max
j

Fhi S t1
1

2D ,hj S t1
1

2D G , ~5.6!

where j runs over the nearest neighbors of sitei. Starting
from a flat interfacehi(0)50, the sites at maximal heigh
hi(t)5t may be considered as active sites of a DP proc
Obviously Eq.~5.5! turns active into inactive sites with prob
ability 12p, while offspring production is realized by th
process~5.6!. Therefore, ifp is large enough, the interface
smooth and propagates with velocity 1. Below a critic
threshold, however, the density of active sites at the maxi
heighthi(t)5t vanishes, and the growth velocity is small
than 1. Identifying the sites withhi5t asA particles, those
with hi>t21 asB particles, etc., the dynamical process
resemble the rules of coupled DP. The corresponding o
parameters are defined by
P
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nk5
1

N (
i

(
h50

k21

dhi ,t2h . ~5.7!

Thus PNG models may be interpreted as a realization
coupled DP in acomovingframe. An exact mapping relating
PNG models and the previously discussed SOS mo
~where coupled DP resides in a fixed frame next to the b
tom layer! was proposed in Ref.@34#. It should be empha-
sized that the existence of a roughening transition in P
models requires the use of parallel updates. If rando
sequential updates are used, the transition is lost, and
interface is always rough since then there is no maxim
velocity.

C. Models for fungal growth

Recently, López and Jensen@35# introduced a class o
models for the growth of colonial organisms, such as fu
and bacteria. The models are motivated by recent exp
ments@36# with the yeastPichia membranaefacienson so-
lidified agarose film. Depending on the concentration of p
luting metabolites, different front morphologies we
observed. The aim of the models is to explain these morp
logical transitions on a qualitative level.

The model for fungal growth is defined on a triangul
(111)-dimensional lattice whose sites are either occupied
vacant. Growth of the colony occurs because of the divis
of individual cells, i.e., only nearest neighbors of occupi
sites can become occupied. The model evolves byparallel
updates. To mimic realistic cells, it is assumed that cell
vision is less likely in young cells. To this end, the simul
tion keeps track of the ageaj (t) of occupied sites. The prob
ability Pi(t) for a vacant sitei to become occupied in the
next time step depends on the total ageAi(t)5(^ i , j &aj (t) of
the occupied nearest neighbors of sitei. Using the functional
dependencePi(t)5tanh@uAi(t)#, a roughening transition wa
observed atuc50.183(3). Investigating clusters of site
growing at maximal velocity, some of the critical properti
at the transition could be related to DP@35#. It was argued
that this roughening transition could be the essential mec
nism behind the morphological transitions observed in
periments.

Clearly the above fungal model and the PNG models
very similar in character. They both work with parallel u
dates and exhibit a roughening transition which is related
DP. Here we will present numerical evidence to show t
the fungal growth model is actually a realization of coupl
DP, in spite of complicated details such as the age-depen
rates for cell division and interface overhangs. The or
parametersnk may be defined as

nk5
1

N (
i

Ni~ t !dyi ,t2k11 , ~5.8!

whereNi(t)50,1 denotes the occupation number of sitei,
and yi is the height coordinate of thei th site. We have nu-
merically measured the densitiesn1 ,n2 , andn3 near critical-
ity in the smooth phase~see Fig. 16!. Our estimatesb1
50.28(2), b250.13(2), b350.04(2) are in agreement with
the numerical results of Sec. IV.
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As in the PNG models, the existence of a roughen
transition in the model for fungal growth requires the use
parallel updates. For random sequential updates there i
such transition and the interfaces are always rough. H
ever, random sequential updates seem to be a more appr
ate description of the experiments in Ref.@36#, since realistic
cells do not divide synchronously. Therefore it is still uncle
to what extent the roughening transition of the model in R
@35# is related to morphological transitions in realistic fung
growth.

D. Critical behavior near the light cone in spreading processes
with parallel dynamics

Let us finally consider a directed bond percolation proc
on a tilted square lattice ind11 dimensions, which may be
understood as a stochastic cellular automaton evolving
parallel updates@27#. Starting from a single active seed, su
a cellular automaton generates a cluster of active sites.
maximal percolation probabilityp51 this cluster is compac
and has the shape of a pyramid. This means that all s
within the light cone ~the surface of the pyramid! are acti-
vated.

Apart from the usual phase transition, DP models w
parallel updates ind>2 spatial dimensions exhibit asecond
transition, where the clusters detach from their light cone
the case of (211)-dimensional directed bond percolatio
this transition takes place atp5ps.0.6447.pc . As illus-
trated in Fig. 17, the dynamical processes near the light c
constitute a unidirectionally coupled hierarchy of DP pr
cesses ind21 spatial dimensions. The lowest hierarc
level A corresponds to the sites in the light cone. Clea
these sites are decoupled from the interior of the pyram
The following hierarchy levelsB,C, . . . correspond to par
allel planes as indicated in Fig. 17. Since activity can o
percolate forward in time, these planes are coupled in o
one direction without feedback. The dynamical proces
within each subsystem are precisely those of a directed b
percolation process on a tilted square lattice ind21 spatial

FIG. 16. Coupled DP in a model for fungal growth. The gra
shows the density of the first three levels propagating at maxi
velocity as a function ofu2uc in the smooth phase. Power-law fi
are used to estimate the exponentsbk ~see text!. The inset shows a
typical configuration of the growing front near criticality.
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dimensions. Therefore, the numerical value ofps in d spatial
dimensions coincides with the usual transition pointpc in d
21 dimensions. This explains the numerical valueps
.0.6447.

VI. COUPLED ANNIHILATION REACTIONS

We finally return to the question of whether new dynam
universality classes can be constructed by the unidirectio
coupling of known nonequilibrium processes. We have s
that in the case oflinearly coupled directed percolation, th
ensuing hierarchical structure leads to the emergence of m
ticritical behavior at a special point in control parame
space, described by the novel density exponentsb i anda i .
Similarly, we expect identical qualitative features for th
closely related problem of linearly coupled dynamic~isotro-
pic! percolation processes~albeit there one of the nonlinea
vertices is nonlocal in time@14#!. This is to be contrasted
with the very generalquadratically coupled multicolor DP
processes studied recently by Janssen, where ordinary
critical behavior is found@15#.

The simplest nontrivial case, however, would be to co
sider a stochastic process which is generically sca
invariant, i.e., where no tuning to a special critical point
required. An example of such a system is provided by
simple diffusion-limited two-particle annihilation reactio
@7,8#

A1A→0 with rate lA . ~6.1!

The corresponding mean-field rate equation for the part
densityA reads

]nA~x,t !

]t
5D¹2nA~x,t !22lAnA~x,t !2, ~6.2!

which is solved at long timest→` by nA(t);t21. Power
counting shows that this result is expected to be correct
dimensionsd.dc52.

In low-dimensional systems, however, fluctuations a
the emerging particle-anticorrelations become important,
the density decay exponent is reduced. In order to incl
these fluctuations consistently, one may derive the follow
field theory from the classical master equation@8#:

al

FIG. 17. Realization of a unidirectionally coupled hierarchy
~111!-dimensional DP processes in a~211!-dimensional directed
bond percolation process with parallel updates. The figure sh
the ‘‘light cone’’ starting from a single site. The subsystem
A,B,C, . . . correspond to tilted planes as indicated by the arro
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S5E ddxE dt@ â~] t2D¹2!a2lA~12â2!a2#, ~6.3!

where we have omitted boundary terms stemming from
initial configuration, as well as terms related to the project
state~see Ref.@8#!. When the action~6.3! is expanded abou
the stationary solutionâ51, the classical field equation fo
a(x,t) yields precisely the mean-field rate equation~6.2!.
The entire field theory~6.3! can also be recast in the form o
a Langevin equation for the fielda(x,t), although this field is
related to the true density fieldnA(x,t) in a rather nontrivial
way @17,8,37#.

The structure of the field theory~6.3! is very simple, as no
diagrams can be constructed that would renormalize the
diffusion propagator (2 iv1Dq2)21. Furthermore, the en
tire perturbation series for the annihilation vertices is read
summed via a geometric series, or through solving the en
ing Bethe-Salpeter equation. Hence the scaling behavio
the density is known exactly. The final result is@8#

nA~ t !;H t2d/2 for d,2,

t21ln t for d5dc52,

t21 for d.2.

~6.4!

Let us now consider a hierarchy of such annihilation p
cesses,

B1B→0 with rate lB , ~6.5!

etc., unidirectionally coupled via the branching reaction

A→A1B with rate sAB . ~6.6!

The choice of this specific coupling can be motivated
follows. If theA species were not to appear on the right-ha
side of the reaction~6.6!, then this would constitute a spon
taneous death process for theA particles, immediately lead
ing to an exponential density decay. However, on the low
hierarchy level, we want to retain all the features of the u
coupled reactions@especially the power-law decay of Eq
~6.4!#. Also, we want to keep the coupling reaction linear
the particle densitynA , as in our earlier analysis of couple
DP. Thus, the reaction~6.6! feeds additional particles into
level B, which in mean-field theory is described by the ra
equation

]nB~x,t !

]t
5D¹2nB~x,t !22lBnB~x,t !21sABnA~x,t !.

~6.7!

Obviously for long times~and consequently for low dens
ties!, the B particles are now slaved by theA species, and
their density ‘‘adiabatically’’ followsnA(t),

nB~ t !'S sAB

2lB
nA~ t ! D 1/2

;t21/2. ~6.8!

As is to be expected, the branching process~6.6! consider-
ably slows down the decay on levelB. Within mean-field
theory, a straightforward generalization to higher hierarc
levels leads toni(t);t2a i, with a i51/2i 21 on level i.
e
n

ee

y
u-
of

-

s
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In order to include fluctuation effects, we write down th
action corresponding to the coupled reactions~6.1!, ~6.5!,
and ~6.6!, settinglA5lB5l andsAB5s:

S5E ddxE dt@ â~] t2D¹2!a2l~12â2!a2

1b̂~] t2D¹2!b2l~12b̂2!b21s~12b̂!âa#.

~6.9!

Notice that theA propagator has now acquired a formal ma
term s, as opposed to theB particles, for which we still the
have the massless diffusion propagator~again, we have as
sumed identical diffusion constantsD for both species!. Of
course, once the shiftsâ511ā andb̂511b̄ are performed,
this mass term disappears~as it should!, and on the classica
level the mean-field rate equation~6.7! is recovered. It is,
however, convenient to work with the unshifted field theo
~6.9!, as it again has the simple property that there are
~UV-divergent! Feynman diagrams that could lead to
renormalization of either of the propagators. This imme
ately implies that the ‘‘mass’’s is not renormalized. Thus,
as opposed to the case of coupled DP, there is no new
trivial scaling field here. If we further assume that there is
nontrivial contribution from the scaling function~i.e., unlike
the case of coupled DP!, then we may thus just insert the tru
density decay results~6.4! into the mean-field relation~6.8!,
in order to obtain the asymptotic decay for theB particles.
The result is that the decay exponents are halved on
second hierarchy level. The obvious generalization to levi
is therefore

ni~ t !;H t2d/2i
for d,2,

~ t21ln t !1/2i 21
for d5dc52,

t21/2i 21
for d.2,

~6.10!

which, with the above assumption, is anexactresult at suf-
ficiently long times.

However, in a simulation withfinite particle numbers,
again one would asymptotically expect a crossover to
decoupled scaling regime, namely when there emerge la
regions depleted of theA species. Correspondingly, perhap
one should notice that the coupled annihilation problem
plagued by IR-divergent diagrams which are very similar
nature to the coupled DP case. For example, to one-l
order, the newly generatedaaāb̄ vertex for the massles
shifted fields includes a diagram with two masslessa and
two masslessb propagators, as depicted in Fig. 18. This lo
integral is infrared-singular wheneverd<6. One possible in-
terpretation of these additional, apparently nonrenorma
able IR singularities could be that they reflect an event
nonuniversalcrossover to the decoupled regime. Neith
though, can we exclude the possibility that ultimately a ve
different scaling regime ensues, which would have to be
dressed by means of an effective resummation of the exp
sion with respect to therelevantcouplings.

Numerical simulations of coupled annihilation process
can be performed on the same lattice as in Fig. 11. T
stochastic rules have to be chosen in such a way that a
ticle at sitei jumps to one of the neighboring sites with equ
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probability. When two particles meet at the same place, t
annihilate instantaneously. Surprisingly, in the limit of in
nite coupling~instantaneous transfer of activity to the ne
subsystem! the resulting curves in a log-log plot are n
straight and do not reproduce the result of Eq.~6.10!. A more
detailed analysis reveals that the magnitude of these de
tions depends strongly on the coupling strength between
subsystems. To this end we replace the instantaneous tra
of activity by a probabilistic rule, i.e., active particles crea
particles in the next subsystem at the same location w
probabilityq. Clearly,q plays the role of the parameters in
the field theory. By varyingq we observe that the predictio
of Eq. ~6.10! is only valid in alimited scaling regime. Asq
decreases, the size of the scaling regime grows, as illustr
in Fig. 19. On the other hand, the initial crossover into t
scaling regime also grows withq. Similar simulations in 3
11 dimensions for maximalq suggest that these deviation
still persist above the critical dimension although they
much less pronounced in that case. This supports the con
ture that the breakdown of the scaling regime is caused
IR-singular diagrams related to additional powers ofs,
which would even invalidate the simple mean-field a
proach.

Concluding this section, we note that novel critical beha
ior does not necessarily arise in the unidirectional coupl
of stochastic processes. A counterexample is given by
following variant of coupled annihilation, where we repla
the reaction~6.6! with

FIG. 18. Coupled annihilation: An IR-divergent diagram co

tributing to theaaāb̄ vertex at one-loop order.

FIG. 19. The coupled annihilation process in 111 dimensions:

the graphs show the densitiesni(t)t
1/2i

of the first three levels as a
function of time for different values of the coupling strengthq. The
scaling regime is marked by the two dashed lines~see text!. Time is
measured in Monte Carlo steps.
y

ia-
he
fer

th

ted
e

e
c-
y

-

-
g
e

A1A→B1B with ratelAB . ~6.11!

The ensuing coupled diffusion-limited reaction processes
a special case of the more general system where the ba
actionB1B→A1A is present as well. The full system wa
studied by field-theoretic means in Ref.@37#. Through an
analysis of the coupled Bethe-Salpeter equations for the
nonlinear vertices, it was shown in@37# that theA and B
reactions asymptotically decouple, and each particle spe
decays according to Eq.~6.4!. The physical reason for this i
of course that two particles are required to meet in order
the coupling reaction~6.11! to take place. Thus, this reactio
competes with the annihilation process itself, and, in ad
tion, as the daughterB particles appear on the same site
they have a high probability to annihilate again immediate
This is somewhat related to the robustness of the DP uni
sality class forquadraticallycoupled DP processes@15#.

VII. SUMMARY AND DISCUSSION

The simulations presented in the last few sections sh
good agreement with the predictions of the underlying fi
theory for a certain range of the parametert for coupled DP.
Similarly, good agreement is also found for a range of tim
t for coupled annihilation~or coupled DP at criticality!. Nev-
ertheless, deep into the critical region the simulations sho
drift in the critical scaling exponents of the second a
higher hierarchy levels, perhaps towards their decoupled
ues. It is not clear, however, if this drift will go all the wa
towards attaining the decoupled values of these expone
Furthermore, the drift is more pronounced in the coup
annihilation model where, by decreasing the strength of
interspecies coupling, one can extend the range of the in
mediate power-law behavior and delay the onset of the d

From the field-theoretical point of view we believe th
drift might be due to the increasing effect of the IR
problematic diagrams which were identified both for t
coupled DP problem as well as for the coupled annihilat
problem. These diagrams contain higher powers of therel-
evantinterspecies coupling and thus are suppressed for s
values of this coupling. On the other hand, they beco
more dominant for larger values of the transmutation ra
which, being a relevant operator, increases as one g
deeper into the critical region. This might perhaps render
asymptotic field theory, for large interspecies coupling, no
renormalizable. Note that the simulations for coupled an
hilation show that the drift in the value of the exponents
the second and higher hierarchy levels persists even fod
53, which is above the upper critical dimensiondc52 for
the first hierarchy level. This shows that even mean-fi
theory may not be valid atd53, consistent with the fact tha
there exist IR-singular diagrams diverging for anyd<6.
Technically, a resummation of the power expansion with
spect tom or s would be desirable; unfortunately, a mo
satisfactory approach to this problem is not yet known.

We propose the following interpretation of this scenar
eventually we expect anonuniversalcrossover into decou
pled behavior. This is because in a real system, due to
discreteness of the number of particles, which is always



r
ic

n
bi
he
if
te
cu

n-
M.
l-

the
em
d
he

PRE 59 6407NONEQUILIBRIUM CRITICAL BEHAVIOR IN . . .
integer, there are likely to be large regions with noA par-
ticles at all, and there theB particles will behave as if they
are decoupled from theA species. This is also true for highe
hierarchy levels. Thus we have an interesting case in wh
the field theory predicts correctly the scaling in aninterme-
diate universalcritical regime, but eventually breaks dow
deep in the asymptotic limit. There is of course the possi
ity that one might construct a meaningful field theory for t
asymptotic regime which will describe a crossover to a d
ferent critical behavior, distinct from both the intermedia
regime and the decoupled behavior, but this seems a diffi
task and perhaps even an unlikely scenario at this time.
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